Review Article - A study of some fixed point theorems for various types of maps (original) (raw)

Abstract

S. The theory has several rather well-defined (yet overlapping) branches. The purely topological theory as well as those topics which lie on the borderline of topology and functional analysis (e.g. those related to Leray-Schauder theory) have their roots in the celebrated theorem of L. E. J. Brouwer. This paper presents a review of the available literature on fixed point theorems for various types of maps.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (55)

  1. -valued mapping only, the continuity of the multi-valued mappings are not needed. Bibliography:
  2. Altun, I. and Turkoglu, D. (2009). Some fixed point theorems for weakly compatible mappings satisfying an implicit relation. Taiwanese J. Math. (13)4: 1291-1304.
  3. Asad, A. J. and Ahmad, Z. (1999). Common fixed point of multi-valued mappings with weak commu-tativity conditions. Radovi, Math. 9: 119-124.
  4. Aydi, H., Jellali, M. and Karapinar E. Common fixed points for generalized _-implicit contractions in partial metric spaces: Consequences and application, RACSAM-Revista de la Real Academia de Ciencias Exactas. Físicas y Naturales. Serie A. Matemáticas. To appear.
  5. Berinde, M and Berinde, V. (2007). On a general class of multi-valued weakly Picard mappings. J. Math. Anal. Appl. 326: 772-782.
  6. Browder, F. E. (1976). Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Symp. Pure Math., (18)2: American Mathematical Society, Providence, RI.
  7. Daffer, P. Z and Kaneko, H. (1995). Fixed points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 192: 655-666.
  8. Fisher, B. (1983). Common fixed point of four mappings. Bull. Inst. Math. Acad. Sinica, 11: 103-113.
  9. Fisher, B. (1979). Mappings satisfying rational inequality. Nanta Math., 12: 195-199.
  10. Gulyaz. S. and Karapinar, E. (2013). Coupled fixed point result in partially ordered partial metric spaces through implicit function. Hacet. J. Math. Stat. (42)4: 347-357.
  11. Gulyaz, S., Karapinar, E. and Yuce, I. S. (2013). A coupled coincidence point theorem in partially ordered metric spaces with an implicit relation. Fixed Point Theory Appl. 2013, 38: 11.
  12. Hitzler, P. and Seda, A. K. (1999). Multi-valued mappings, fixed point theorems and disjunctive databases. 3rd Irish Workshop on Formal Methods (IWFM-99), EWIC, British Computer Society.
  13. Husain, T. and Latif, A. (1991). Fixed points of multi-valued nonexpansive maps. Internat. J. Math. & Math. Sci. (14)3: 421-430.
  14. Jungck, G. (1976). Commutating mappings and fixed points. Amer. Math. Monthly, 83: 261-263.
  15. Jungck, G. (1986). Compatible mappings and common fixed points. Internat J. Math. Math. Sci., 9(4): 771-779.
  16. Jungck, G. and Rhoades, B. E. (1998). Fixed point for set valued functions without continuity. Ind. J. Pure and Appl. Math., 29(3): 227-238.
  17. Kamran, T. (2004). Coincidence and fixed points for hybrid strict contractions. J. Math. Anal. Appl., 299: 235-241.
  18. Kaneko, H. (1988). A common fixed point of weakly commuting multi-valued mappings. Math. Japon., 33(5): 741-744.
  19. Kaneko, H. and Sessa, S. (1989). Fixed point theorems for compatible multi-valued and single-valued mappings. Internat. J. Math. Math. Sci., 12(2): 257-262.
  20. Karapinar, E. and Erhan, I. M. (2012). Cyclic contractions and fixed point theorems. Filomat. (26)4: 777-782.
  21. Karapinar, E. (2011). Fixed point theory for cyclic weak _- contraction. Appl. Math. Lett. (24)6: 822-825.
  22. Kirk, W. A. and Massa, S. (1990). Remarks on asymptotic and Chebyshev centers. Houston J. Math. (16) 3: 357-364.
  23. Kirk, W.A., Srinivasan, P.S. and Veeramani, P. (2003). Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory. (4)1: 79-89.
  24. Kubiak, T. (1985). Fixed point theorems for contractive type multi-valued mappings. Math. Japon., 30: 89-101.
  25. Kubiaczyk, I. and Mostafa Ali, N. (1996). A multi-valued fixed point theorems in non Archimedean vector spaces. Novi Sad J. Math., 26(2): 111-115.
  26. Kyzyska, S. and Kubiaczyk, I. (1998). Fixed point theorems for upper semicontinuous and weakly upper semicontinuous multi-valued mappings. Math. Japonica, (47)2: 237-240.
  27. Lami Dozo, E. (1973). Multi-valued nonexpansive mappings and Opial's condition. Proc. Amer. Math. Soc. 38: 286-292.
  28. Lim, T. C. (1974). A fixed point theorem for multi-valued nonexpansive mappings in a uniformly convex Banach space. Bull. Amer. Math. Soc. 80: 1123-1126.
  29. Markin, J. (1968). A fixed point theorem for set valued mappings. Bull. Amer. Math. Soc. 74: 639-640.
  30. Miklaszewski, D. (2001). A fixed point theorem for multivalued mappings with noncyclic values. Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center, 17: 125-131.
  31. Moutawakil, D. E. (2004). A fixed point theorem for multi- valued maps in symmetric spaces. Applied Mathematics E- Notes, 4: 26-32.
  32. Nadler, S. B. (1969). Multi-valued contraction mappings. Pacific J. Math. (20)2: 457-488.
  33. Nashine, H. K., Kadelburg, Z. and Kumam, P. (2012). Implicit-relation-type cyclic contractive mappings and applications to integral equations. Abstr. Appl. Anal. Art. ID 386253, 15 pp.
  34. Olatinwo, M. O. (2009). A fixed point theorem for multi- valued weakly picard operators in b-metric spaces. Demonstratio mathematica, (XLII)3: (2009).
  35. Pacurar, M. (2011). Fixed point theory for cyclic Berinde operators. Fixed Point Theory (12)2: 419-428.
  36. Pacurar, M. and Rus, I. A. (2010). Fixed point theory for cyclic '-contractions. Nonlinear Anal. 72: 1181-1187.
  37. Pant, R. P. (1994). Common fixed points of non-commuting mappings. J. Math. Anal. Appl., 188: 436-440.
  38. Pant, R. P. (1998). Common fixed point theorems for contractive maps. J. Math. Anal. Appl. 236: 251-258.
  39. Pant, R. P. (1999). Common fixed points of Lipschitz type mapping pairs. J. Math. Anal. Appl., 240: 280-283.
  40. Pant, R. P. (1999). Discontinuity and fixed points. J. Math. Anal. Appl., 240: 284-289.
  41. Percup, R. (2002). Fixed point theorems for acyclic multi- valued maps and inclusions of Hammerstein type. Seminar on Fixed Point Theory Cluj-Napoca, 3: 327-334.
  42. Petric, M. A. (2010). Some results concerning cyclical contractive mappings. Gen. Math. (18)4: 213-226.
  43. Popa, V. (1997). Some fixed point theorems for implicit contractive mappings. Stud. Cercet. Stiinµ., Ser. Mat., Univ. Bacau 7: 129-133.
  44. Popa,V. (2000). A general coincidence theorem for compatible multi-valued mappings satisfying an implicit relation. Demonstratio Math. (33)1: 159-164.
  45. Popa, V. (1999). A general fixed point theorem for weakly commuting multi-valued mappings. Anal. Univ. Dunarea de Jos, Galaµi, Ser. Mat. Fiz. Mec. Teor., Fasc. II 18 (22): 19- 22.
  46. Popa, V. (2015). A general fixed point theorem for implicit cyclic multi-valued contraction mappings. Annales Mathematicae Silesianae 29: 119-129.
  47. Popa, V. (1999). Some fixed point theorems for compatible mappings satisfying an implicit relation. Demonstratio Math. (32)1: 157-163.
  48. Reich, S. (1983). Some problems and results in fixed point theory. Contemporary Math. 21: 179-187.
  49. Rus, I. A. (2005). Cyclic representations of fixed points. Ann. Tiberiu Popoviciu, Semin. Funct. Equ. Approx. Convexity, 3: 171-178.
  50. Shahzad, N. and Kamran, T. (2001). Coincidence points and R-weakly commuting maps. Arch. Math. (Brno), 37: 179- 183.
  51. Sessa, S. (1982). On weak commutativity condition of mappings in fixed point consideration. Publ. Inst. Math., ( 32)46: 149-155.
  52. Singh, S. L. and Singh, S. P. (1980). A fixed point theorem. Ind. J. Pure Appl. Math., 11: 1584-1586.
  53. Singh, S. L. and Mishra, S. N. (2001). Coincidence and fixed points of non self hybrid contraction. J. Math. Anal. Appl., 256: 486-497.
  54. Sintunavarat, W. and Kumam, P. (2012). Common fixed point theorem for cyclic generalized multi-valued mappings. Appl. Math. Lett. 25: 1849-1855.
  55. Xu, H. K. (2000). Metric Fixed Point Theory for Multi- valued Mappings. Dissertations Math. (Rozprawy Mat.) 389.