Differential expression of two MyoD genes during early development of the trout: comparison with myogenin (original) (raw)

Differential expression of two nonallelic MyoD genes in developing and adult myotomal musculature of the trout ( Oncorhynchus mykiss )

Development Genes and Evolution, 1999

Previously we identified two nonallelic MyoD encoding genes in the rainbow trout. These two MyoD genes (TMyoD and TMyoD2) were duplicated during the tetraploidization of the salmonid genome. In this study we show that TMyoD and TMyoD2 exhibit a distinct spatiotemporal pattern of expression that defines discrete cell populations in the developing somite. TMyoD expression is first detected in the mid-gastrula on either side of the elongating embryonic shield. During the anterior-to-posterior wave of somite formation the TMyoD transcript is initially present in adaxial cells of both the presomitic mesoderm and the forming somites. A lateral extension of TMyoD expression occurs only when the myotomes acquire their characteristic chevron shape pointing rostrally. By contrast, the initial expression of TMyoD2 occurs in somites that have already formed and is limited to the posterior compartment of somites. Further, in postlarval trout we observed a differential expression of TMyoD and TMyoD2 genes in muscle fibers with differing phenotype. Collectively, these data provide evidence that the two trout MyoD encoding genes have evolved to become functionally different. A comparison of the expression patterns of the two trout MyoD genes with that of myogenin allowed us to position them in the regulatory pathway leading to muscle differentiation.

Red and white muscle development in the trout (Oncorhynchus mykiss) as shown by in situ hybridisation of fast and slow myosin heavy chain transcripts

Journal of …, 2001

The axial muscle of most teleost species consists of a deep bulk of fast-contracting white fibres and a superficial strip of slow-contracting red fibres. To investigate the embryological development of fast and slow muscle in trout embryos, we carried out single and double in situ hybridisation with fast and slow myosin heavy chain (MyHC)-isoform-specific riboprobes. This showed that the slow-MyHC-positive cells originate in a region of the somite close to the notochord. As the somite matures in a rostrocaudal progression, the slow-MyHC-positive cells appear to migrate radially away from the notochord to the lateral surface of the myotome, where they form the superficial strip of slow muscle. Surprisingly, the expression pattern of the fast MyHC showed that the differentiation of fast muscle commences in the medial domain of the somite before the differentiation and migration of the slow muscle precursors. Later, as the differentiation of fast muscle progressively spreads from the i...

The genes for the helix-loop-helix proteins Id6a, Id6b, Id1 and Id2 are specifically expressed in the ventral and dorsal domains of the fish developing somites

Journal of Experimental Biology, 2004

Muscle differentiation is inhibited by members of the Id family that block the transcriptional effect of myogenic bHLH regulators by forming inactive heterodimers with them. Also, Id proteins promote cell proliferation by interacting with key regulators of the cell cycle. In order to determine the role of Id-encoding genes during fish development and especially in early myogenesis, we examined the expression patterns of Id1, Id2 and two nonallelic Id6 (Id6a and Id6b)-encoding genes in developing trout embryos. These four Id paralogs were found to exhibit discrete expression in the developing nervous system and in the eye rudiment. During the segmentation process, Id6a, Id6b and Id1 were expressed in the tail bud, the paraxial mesoderm and the ventral and dorsal domains of neoformed somites. As the somite matured in a rostrocaudal progression, the labelling for Id1 transcripts rapidly faded whereas labelling for Id6 transcripts was found to persist until at least the completion of segmentation. By contrast, Id2 transcripts were visualised transiently only in dorsal domains of neoformed somites and strongly accumulated in the pronephros. The preferential localisation of Id6a, Id6b, Id1 and Id2 transcripts within ventral and/or dorsal extremes of the developing somites, suggests that these areas, which were the last ones to express muscle-specific genes, contain dividing cells involved in somite expansion.

Mapping and Expression of Candidate Genes for Development Rate in Rainbow Trout (Oncorhynchus mykiss)

Development rate has important implications for individual fitness and physiology. In salmonid fishes, development rate correlates with many traits later in life, including life-history diversity, growth, and age and size at sexual maturation. In rainbow trout (Oncorhynchus mykiss), a quantitative trait locus for embryonic development rate has been detected on chromosome 5 across populations. However, few candidate genes have been identified within this region. In this study, we use gene mapping , gene expression, and quantitative genetic methods to further identify the genetic basis of embryonic developmental rate in O. mykiss. Among the genes located in the region of the major development rate quantitative trait locus (GHR1, Clock1a, Myd118-1, and their paralogs), all were expressed early in embryonic development (fertilization through hatch), but none were differentially expressed between individuals with the fast-or slow-developing alleles for a major embryonic development rate quantitative trait locus. In a follow-up study of migratory and resident rainbow trout from natural populations in Alaska, we found significant additive variation in development rate and, moreover, found associations between development rate and allelic variation in all 3 candidate genes within the quantitative trait locus for embryonic development. The mapping of these genes to this region and associations in multiple populations provide positional candidates for further study of their roles in growth, development, and life-history diversity in this model salmonid.

Temperature influences the coordinated expression of myogenic regulatory factors during embryonic myogenesis in Atlantic salmon (Salmo salarL.)

Journal of Experimental Biology, 2007

SUMMARYPotential molecular mechanisms regulating developmental plasticity to temperature were investigated in Atlantic salmon embryos (Salmo salarL.). Six orthologues of the four myogenic regulatory factors (MRFs:individually: smyf5, smyoD1a/1b/1c, smyoG and sMRF4), the master transcription factors regulating vertebrate myogenesis, were characterised at the mRNA/genomic level. In situ hybridisation was performed with specific cRNA probes to determine the expression patterns of each gene during embryonic myogenesis. To place the MRF data in the context of known muscle fibre differentiation events, the expression of slow myosin light chain-1 and Pax7 were also investigated. Adaxial myoblasts expressed smyoD1a prior to and during somitogenesis followed by smyoD1c (20-somite stage, ss),and sMRF4 (25–30 ss), before spreading laterally across the myotome, followed closely by the adaxial cells. Smyf5 was detected prior to somitogenesis, but not in the adaxial cells in contrast to other tel...

Characterization of Muscle-Regulatory Gene, MyoD, from Flounder (Paralichthys olivaceus) and Analysis of Its Expression Patterns During Embryogenesis

Marine Biotechnology, 2006

Specification and differentiation of skeletal muscle cells are driven by the activity of genes encoding members of the myogenic regulatory factors (MRFs). In vertebrates, the MRF family includes MyoD, Myf5, myogenin, and MRF4. The MRFs are capable of converting a variety of nonmuscle cells into myoblasts and myotubes. To better understand their roles in fish muscle development, we isolated the MyoD gene from flounder (Paralichthys olivaceus) and analyzed its structure and patterns of expression. Sequence analysis showed that flounder MyoD shared a structure similar to that of vertebrate MRFs with three exons and two introns, and its protein contained a highly conserved basic helix-loop-helix domain (bHLH). Comparison of sequences revealed that flounder MyoD was highly conserved with other fish MyoD genes. Sequence alignment and phylogenetic analysis indicated that flounder MyoD, seabream (Sparus aurata) MyoD1, takifugu (Takifugu rubripes) MyoD, and tilapia (Oreochromis aureus) MyoD were more likely to be homologous genes. Flounder MyoD expression was first detected as two rows of presomitic cells in the segmental plate. From somitogenesis, MyoD transcripts were present in the adaxial cells that give rise to slow muscles and the lateral somitic cells that give rise to fast muscles. After 30 somites formed, MyoD expression decreased in the somites except the caudal somites, coincident with somite maturation. In the hatching stage, MyoD was expressed in other muscle cells and caudal somites. It was detected only in muscle in the growing fish.

Temperature and the expression of myogenic regulatory factors (MRFs) and myosin heavy chain isoforms during embryogenesis in the common carp Cyprinus carpio L

Journal of Experimental Biology, 2004

The myogenic regulatory factors (MRFs) are a family of basic helix-loop-helix (bHLH) transcription factors essential to the specification and determination of the muscle cell lineage. The four members of this protein family, MyoD, Myf-5, myogenin and MRF4, are characterised by their ability to induce myogenic conversion in a variety of Embryos of the common carp, Cyprinus carpio L., were reared from fertilization of the eggs to inflation of the swim bladder in the larval stage at 18 and 25°C. cRNA probes were used to detect transcripts of the myogenic regulatory factors MyoD, Myf-5 and myogenin, and five myosin heavy chain (MyHC) isoforms during development. The genes encoding Myf-5 and MyoD were switched on first in the unsegmented mesoderm, followed by myogenin as the somites developed. Myf-5 and MyoD transcripts were initially limited to the adaxial cells, but Myf-5 expression spread laterally into the presomitic mesoderm before somite formation. Two distinct bands of staining could be seen corresponding to the cellular fields of the forming somites, but as each furrow delineated, Myf-5 mRNA levels declined. Upon somite formation, MyoD expression spread laterally to encompass the full somite width. Expression of the myogenin gene was also switched on during somite formation, and expression of both transcripts persisted until the somites became chevron-shaped. Expression of MyoD was then downregulated shortly before myogenin. The expression patterns of the carp myogenic regulatory factor (MRF) genes most-closely resembled that seen in the zebrafish rather than the rainbow trout (where expression of MyoD remains restricted to the adaxial domain of the somite for a prolonged period) or the herring (where expression of MyoD persists longer than that of myogenin). Expression of two embryonic forms of MyHC began simultaneously at the 25-30 somite stage and continued until approximately two weeks post-hatch. However, the three adult isoforms of fast muscle MyHC were not detected in any stage examined, emphasizing a developmental gap that must be filled by other, as yet uncharacterised, MyHC isoform(s). No differences in the timing of expression of any mRNA transcripts were seen between temperature groups. A phylogenetic analysis of the MRFs was conducted using all available full-length amino acid sequences. A neighbourjoining tree indicated that all four members evolved from a common ancestral gene, which first duplicated into two lineages, each of which underwent a further duplication to produce Myf-5 and MyoD, and myogenin and MRF4. Parologous copies of MyoD from trout and Xenopus clustered closely together within clades, indicating recent duplications. By contrast, MyoD paralogues from gilthead seabream were more divergent, indicating a more-ancient duplication.

Myogenic regulatory factors and muscle differentiation during ontogeny in fish EARLY MUSCLE DEVELOPMENT OF FISH

cDNA clones encoding the myogenic regulatory factors, myogenin, MyoD and myf-5 were cloned by reverse-transcription polymerase chain reaction from larvae and embryos of the common carp. MEF2 cDNAs were also identified from an adult carp cDNA library. During the period of somite formation for carp, myf-5 was the first factor to be expressed followed by MEF2C and MyoD, then myogenin and MEF2A, and finally skeletal myosin heavy chain and -actin. This study also examined, by Northern blot analysis, the accumulated mRNA levels of myosin heavy chain (MyHC) isoforms in carp fast skeletal muscle during water temperature acclimation from 20 to 30 C in relation to those of MyoD family and MEF2 family members.

Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): Evidence for different selective pressure on teleost MSTN-1 and -2

Gene, 2007

Whereas the negative muscle regulator myostatin (MSTN) in mammals is almost exclusively expressed in the muscle by a single encoding gene, teleost fish possess at least two MSTN genes which are differentially expressed in both muscular and non-muscular tissues. Duplicated MSTN-1 genes have previously been identified in the tetraploid salmonid genome. From Atlantic salmon we succeeded in isolating the paralogous genes of MSTN-2, which shared about 70% identity with MSTN-1a and -1b. The salmon MSTN-2a cDNA encoded a predicted protein of 363 residues and included the conserved C-terminal bioactive domain. MSTN-2a seemed to be primarily expressed in the brain, and a functional role of teleost MSTN-2 in the neurogenesis similar to the inhibitory action of the closely related GDF-11 in the mammalian brain was proposed. In contrast, a frame-shift mutation in exon 1 of salmon MSTN-2b would lead to the synthesis of a putatively non-functional truncated protein. The absence of processed MSTN-2b mRNA in the examined tissues indicated that this gene has become a non-functional pseudogene. The differential, but partially overlapping, expression patterns of salmon MSTN-2a, -1a and -1b in muscular and non-muscular tissues are probably due to the different arrangement of the potential cis-acting regulatory elements identified in their putative promoter regions. Single and paired E-boxes in the MSTN-1b promoter were shown to bind both homo-and hetero-dimers of the myogenic regulatory factor MyoD and E47 in vitro of importance for initiating the myogenic program. Analyses of nucleotide substitution patterns indicated that the teleost MSTNs essentially have evolved under purifying selection, but a subset of amino acid sites under positive selective pressure were identified within the MSTN1 branch. The results may reflect the evolutionary forces related to adoption of the different functional roles proposed for the teleost MSTN isoforms. The phylogenetic analysis of multiple vertebrate MSTNs suggested at least two separate gene duplication events in the fish lineage. Linkage analysis of polymorphic microsatellites within intron 2 of salmon MSTN-1a and -1b mapped the two genes to different linkage groups in agreement with the tetraploid origin of the duplicated salmonid MSTN-1 and MSTN-2 genes.