Dislocation sinks efficiency for self-point defects in iron and vanadium crystals (original) (raw)
Inorganic Materials: Applied Research, 2015
Abstract
ABSTRACT The effect of the dislocations stress fields on their sink efficiency for self-point defects (interstitial atoms and vacancies) is studied in the temperature range of 293–1000 K and at the dislocation density values of 1 × 1012–3 × 1014 m–2 in body-centered cubic (BCC) iron and vanadium crystals. Straight screw and edge dislocations in 〈111〉{110}, 〈111〉{112}, 〈100〉{100}, and 〈100〉{110} slip systems are considered. Defect diffusion is simulated via the object kinetic Monte Carlo method. The energies of the interaction of defects with dislocations are calculated within the anisotropic linear theory of elasticity. The dislocation sink efficiency is analytically represented as a function of temperature and dislocation density.
Alexander Sivak hasn't uploaded this paper.
Let Alexander know you want this paper to be uploaded.
Ask for this paper to be uploaded.