Fiber-optic device for endoscopic polarization imaging (original) (raw)

Demonstration of full 4×4 Mueller polarimetry through an optical fiber for endoscopic applications

Optics Express, 2015

A novel technique to measure the full 4 × 4 Mueller matrix of a sample through an optical fiber is proposed, opening the way for endoscopic applications of Mueller polarimetry for biomedical diagnosis. The technique is based on two subsequent Mueller matrices measurements: one for characterizing the fiber only, and another for the assembly of fiber and sample. From this differential measurement, we proved theoretically that the polarimetric properties of the sample can be deduced. The proof of principle was experimentally validated by measuring various polarimetric parameters of known optical components. Images of manufactured and biological samples acquired by using this approach are also presented.

Polarization response measurement and simulation of rigid endoscopes

Biomedical optics express, 2010

Polarized light can reveal diagnostic information about tissue morphology. To promote easy adoption of polarization imaging techniques in the clinic it would be beneficial if they can be used with standard medical imaging instruments such as rigid endoscopes. We have characterized the polarization properties of two commercial laparoscopes and observed birefringence effects that complicate polarization imaging. Possible solutions are discussed that may be of interest to other tissue polarization imaging researchers.

Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method

This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.

Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method

Journal of biomedical optics, 2016

This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller micros...

Polarisation optics for biomedical and clinical applications: a review

Light: Science & Applications

Many polarisation techniques have been harnessed for decades in biological and clinical research, each based upon measurement of the vectorial properties of light or the vectorial transformations imposed on light by objects. Various advanced vector measurement/sensing techniques, physical interpretation methods, and approaches to analyse biomedically relevant information have been developed and harnessed. In this review, we focus mainly on summarising methodologies and applications related to tissue polarimetry, with an emphasis on the adoption of the Stokes–Mueller formalism. Several recent breakthroughs, development trends, and potential multimodal uses in conjunction with other techniques are also presented. The primary goal of the review is to give the reader a general overview in the use of vectorial information that can be obtained by polarisation optics for applications in biomedical and clinical research.

Narrow band 3 × 3 Mueller polarimetric endoscopy

Biomedical optics express, 2013

Mueller matrix polarimetric imaging has shown potential in tissue diagnosis but is challenging to implement endoscopically. In this work, a narrow band 3 × 3 Mueller matrix polarimetric endoscope was designed by rotating the endoscope to generate 0°, 45° and 90° linearly polarized illumination and positioning a rotating filter wheel in front of the camera containing three polarisers to permit polarization state analysis for backscattered light. The system was validated with a rotating linear polarizer and a diffuse reflection target. Initial measurements of 3 × 3 Mueller matrices on a rat are demonstrated, followed by matrix decomposition into the depolarization and retardance matrices for further analysis. Our work shows the feasibility of implementing polarimetric imaging in a rigid endoscope conveniently and economically in order to reveal diagnostic information.

A fiber-optic polarimetric demonstration kit

Physica Scripta, 2012

A simple and multifunctional fiber-optic polarimetric kit on the basis of highly birefringent single-mode fibers is presented. The fiber-optic polarimetric kit allows us to perform the following laboratory exercises: (i) fiber excitation and the measurement of numerical aperture, (ii) polarization preservation and (iii) obtain polarization-sensitive fiberized interferometers.

Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions

Biomedical Optics Express, 2014

In polarization-sensitive optical coherence tomography (PS-OCT) the use of single-mode fibers causes unpredictable polarization distortions which can result in increased noise levels and erroneous changes in calculated polarization parameters. In the current paper this problem is addressed by a new Jones matrix analysis method that measures and corrects system polarization distortions as a function of wavenumber by spectral analysis of the sample surface polarization state and deeper located birefringent tissue structures. This method was implemented on a passivecomponent depth-multiplexed swept-source PS-OCT system at 1040 nm which was theoretically modeled using Jones matrix calculus. Highresolution B-scan images are presented of the double-pass phase retardation, diattenuation, and relative optic axis orientation to show the benefits of the new analysis method for in vivo imaging of the human retina. The correction of system polarization distortions yielded reduced phase retardation noise, and better estimates of the diattenuation and the relative optic axis orientation in weakly birefringent tissues. The clinical potential of the system is shown by en face visualization of the phase retardation and optic axis orientation of the retinal nerve fiber layer in a healthy volunteer and a glaucoma patient with nerve fiber loss.

Full-field quantitative phase and polarisation-resolved imaging through an optical fibre bundle

Flexible optical fibres, used in conventional medical endoscopy and industrial inspection, scramble phase and polarisation information, restricting users to amplitude-only imaging. Here, we exploit the near-diagonality of the multi-core fibre (MCF) transmission matrix in a parallelised fibre characterisation architecture, enabling accurate imaging of quantitative phase (error <0.3 rad) and polarisation-resolved (errors <10%) properties. We first demonstrate accurate recovery of optical amplitude and phase in two polarisations through the MCF by measuring and inverting the transmission matrix, and then present a robust Bayesian inference approach to resolving 5 polarimetric properties of samples. Our method produces high-resolution (9.0 ± 2.6µm amplitude, phase; 36.0 ± 10.4µm polarimetric) full-field images at working distances up to 1mm over a field-of-view up to 750×750µm 2 using an MCF with potential for flexible operation. We demonstrate the potential of using quantitative phase for computational image focusing and polarisation-resolved properties in imaging birefringence.

All-fiber acousto-optic polarization monitor

Optics Letters, 2007

We describe the operational principle of and experimentally demonstrate a narrowband, wavelength-tunable polarization monitor based on a fiber acousto-optic tunable filter. Two orthogonally vibrating acoustic waves are used to create a variable polarizer that can be used to measure the state of polarization of an incident narrowband light source. The accuracy of the polarization monitor is measured at two different wavelengths in reference to a commercial polarimeter and is shown to be within 5%.