Preference Mining in the Travel Domain (original) (raw)

THOR: A Hybrid Recommender System for the Personalized Travel Experience

Big Data and Cognitive Computing, 2022

One of the travelers’ main challenges is that they have to spend a great effort to find and choose the most desired travel offer(s) among a vast list of non-categorized and non-personalized items. Recommendation systems provide an effective way to solve the problem of information overload. In this work, we design and implement “The Hybrid Offer Ranker” (THOR), a hybrid, personalized recommender system for the transportation domain. THOR assigns every traveler a unique contextual preference model built using solely their personal data, which makes the model sensitive to the user’s choices. This model is used to rank travel offers presented to each user according to their personal preferences. We reduce the recommendation problem to one of binary classification that predicts the probability with which the traveler will buy each available travel offer. Travel offers are ranked according to the computed probabilities, hence to the user’s personal preference model. Moreover, to tackle the cold start problem for new users, we apply clustering algorithms to identify groups of travelers with similar profiles and build a preference model for each group. To test the system’s performance, we generate a dataset according to some carefully designed rules. The results of the experiments show that the THOR tool is capable of learning the contextual preferences of each traveler and ranks offers starting from those that have the higher probability of being selected.

A Novel Approach towards Tourism Recommendation System with Collaborative Filtering and Association Rule Mining

International Journal of Computer Applications, 2014

In the tourism recommendation system, the number of users and items is very large. But traditional recommendation system uses partial information for identifying similar characteristics of users. Collaborative filtering is the primary approach of any recommendation system. It provides a recommendation which is easy to understand. It is based on similarities of user opinions like rating or likes and dislikes. So the recommendation provided by collaborative cannot be considered as quality recommendation. Recommendation after association rule mining is having high support and confidence level. So that will be considered as strong recommendation. The hybridization of both collaborative filtering and association rule mining can produce strong and quality recommendation even when sufficient data are not available. This paper combines recommendation for tourism application by using a hybridization of traditional collaborative filtering technique and data mining techniques.

Towards Learning Travelers’ Preferences in a Context-Aware Fashion

Advances in Intelligent Systems and Computing, 2020

Providing personalized offers, and services in general, for the users of a system requires perceiving the context in which the users' preferences are rooted. Accordingly, context modeling is becoming a relevant issue and an expanding research field. Moreover, the frequent changes of context may induce a change in the current preferences; thus, appropriate learning methods should be employed for the system to adapt automatically. In this work, we introduce a methodology based on the so-called Context Dimension Tree-a model for representing the possible contexts in the very first stages of Application Design-as well as an appropriate conceptual architecture to build a recommender system for travelers.

Augmenting transportation-related recommendations through data mining

This paper reports on the exploitation of data mining techniques during the formulation of purposeful association rules out of the transactions' database of a transportation management system. The rules' construction is performed through an elaborated version of the AprioriTid algorithm. The proposed algorithm is generic and capable to construct such rules by creating a large set of related items. The constructed rules can be used by the system's recommender module, which is responsible for providing recommendations to the associated users. The recommendation process takes into account the constructed rules and techniques that derive from the area of Collaborative Filtering (CF).

The Application of Data-Mining to Recommender Systems

Encyclopedia of Data Warehousing and Mining, Second Edition, 2009

In a world where the number of choices can be overwhelming, recommender systems help users find and evaluate items of interest. They connect users with items to “consume” (purchase, view, listen to, etc.) by associating the content of recommended items or the opinions of other individuals with the consuming user’s actions or opinions. Such systems have become powerful tools in domains from electronic commerce to digital libraries and knowledge management. For example, a consumer of just about any major online retailer who expresses an interest in an item – either through viewing a product description or by placing the item in his “shopping cart” – will likely receive recommendations for additional products. These products can be recommended based on the top overall sellers on a site, on the demographics of the consumer, or on an analysis of the past buying behavior of the consumer as a prediction for future buying behavior. This paper will address the technology used to generate rec...

Developing an intelligent trip recommender system by data mining methods

Internet has a very wide usage in almost every sector. People are continuously looking and searching for information through internet. Narrowing down relevant search results is not a very simple task. Recommender systems are being used in almost every search related area. Tourism domain is one of these sectors. This study proposes an implementation of an expert system framework which can accurately classify users and make predictions about user classifications for recommending tourism related services. Proposed approach predicts clusters for system users and according to these user clusters, trips, hotels and such services can be recommended individually or as a campaign to target user or user groups.

A Modified Approach towards Tourism Recommendation System with Collaborative Filtering and Association Rule Mining

International Journal of Computer Applications, 2014

In the tourism recommendation system, the number of users and items is very large. But traditional recommendation system uses partial information for identifying similar characteristics of users. Collaborative filtering is the primary approach of any recommendation system. It provides a recommendation which is easy to understand. It is based on similarities of user opinions like rating or likes and dislikes. So the recommendation provided by collaborative cannot be considered as quality recommendation. Recommendation after association rule mining is having high support and confidence level. So that will be considered as strong recommendation. The hybridization of both collaborative filtering and association rule mining can produce strong and quality recommendation even when sufficient data are not available. This paper combines recommendation for tourism application by using a hybridization of traditional collaborative filtering technique and data mining techniques.

Data Mining Techniques and Preference Learning in Recommender Systems

Computer and Information Science

The importance of implementing recommender systems has significantly increased during the last decade. The majority of available recommender systems do not offer clients the ability to make selections based on their choices or desires. This has motivated the development of a web based recommender system in order to recommend products to users and customers. The new system is an extension of an online application previously developed for online shopping under constraints and preferences. In this work, the system is enhanced by introducing a learning component to learn user preferences and suggests products based on them. More precisely, the new component learns from other customers’ preferences and makes a set of recommendations using data mining techiques including classification, association rules and cluster analysis techniques. The results of experimental tests, conducted to evaluate the performance of this component when compiling a list of recommendations, are very promising.

Implementation Paper on Personalized Travel Recommendation by Mining People Attributes

International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2022

The recommendation system has growth choices in recent years. The recommendation system is existing in many applications which gives online travel information for individual travel package. A new model named travel recommendation using data mining techniques which extracts the features like locations, travel seasons of various landscapes. Thus, it possesses the material of the travel packages and interests of tourists. Further extending E-TRAST model with the tourist-relation-area season topic model includes relationship with tourists. It includes mining significant tourist locations based on the user search trajectories of users on web and also derives a personalized travel algorithm recommendation system using travelogues and users contributed photos with metadata of this photo by comparing existing different technique. To suggest personalized POI sequence, first famous routes are stratified as per the similarity between user package and route package.