Computational modeling of the negative priming effect based on inhibition patterns and working memory (original) (raw)

Abstract

Negative priming (NP), slowing down of the response for target stimuli that have been previously exposed, but ignored, has been reported in multiple psychological paradigms including the Stroop task. Although NP likely results from the interplay of selective attention, episodic memory retrieval, working memory, and inhibition mechanisms, a comprehensive theoretical account of NP is currently unavailable. This lacuna may result from the complexity of stimuli combinations in NP. Thus, we aimed to investigate the presence of different degrees of the NP effect according to prime-probe combinations within a classic Stroop task. We recorded reaction times (RTs) from 66 healthy participants during Stroop task performance and examined three different NP subtypes, defined according to the type of the Stroop probe in prime-probe pairs. Our findings show significant RT differences among NP subtypes that are putatively due to the presence of differential disinhibition, i.e., release from inhibition. Among the several potential origins for differential subtypes of NP, we investigated the involvement of selective attention and/or working memory using a parallel distributed processing (PDP) model (employing selective attention only) and a modified PDP model with working memory (PDP-WM, employing both selective attention and working memory). Our findings demonstrate that, unlike the conventional PDP model, the PDP-WM successfully simulates different levels of NP effects that closely follow the behavioral data. This outcome suggests that working memory engages in the re-accumulation of the evidence for target response and induces differential NP effects. Our computational model complements earlier efforts and may pave the road to further insights into an integrated theoretical account of complex NP effects. Citation: Chung D, Raz A, Lee J and Jeong J (2013) Computational modeling of the negative priming effect based on inhibition patterns and working memory. Front. Comput. Neurosci. 7:166.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (84)

  1. Beech, A., McManus, D., Baylis, G., Tipper, S., and Agar, K. (1991). Individual differences in cognitive processes: towards an explanation of schizophrenic symptomatology. Br. J. Psychol. 82, 417-426. doi: 10.1111/j.2044- 8295.1991.tb02409.x
  2. Beech, A., Powell, T., McWilliam, J., and Claridge, G. (1989). Evidence of reduced 'cognitive inhibition' in schizophrenia. Br. J. Clin. Psychol. 28, 109-116. doi: 10.1111/j.2044-8260.1989.tb00821.x
  3. Bermeitinger, C., Wentura, D., and Frings, C. (2008). Nature and facts about natu- ral and artifactual categories: sex differences in the semantic priming paradigm. Brain Lang. 106, 153-163. doi: 10.1016/j.bandl.2008.03.003
  4. Brian, J. A., Tipper, S. P., Weaver, B., and Bryson, S. E. (2003). Inhibitory mech- anisms in autism spectrum disorders: typical selective inhibition of location versus facilitated perceptual processing. J. Child Psychol. Psychiatry 44, 552-560. doi: 10.1111/1469-7610.00144
  5. Chiappe, D. L., and MacLeod, C. M. (1995). Negative priming is not task bound: a consistent pattern across naming and categorization tasks. Psychon. Bull. Rev. 2, 364-369. doi: 10.3758/BF03210973
  6. Cohen, J. D., Braver, T. S., and Brown, J. W. (2002). Computational perspectives on dopamine function in prefrontal cortex. Curr. Opin. Neurobiol. 12, 223-229. doi: 10.1016/S0959-4388(02)00314-8
  7. Cohen, J. D., Dunbar, K., and McClelland, J. L. (1990). On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychol. Rev. 97, 332-361. doi: 10.1037/0033-295X.97.3.332
  8. Cohen, J. D., and O'Reilly, R. C. (1996). "A Preliminary Theory of the Interactions Between Prefrontal Cortex and Hippocampus that Contribute to Planning and Prospective Memory," in Prospective Memory: Theory and Applications, eds M. Brandimonte, G. O. Einstein, and M. A. McDaniel (Mahwah, NJ: Lawrence Erlbaum Associates), 267-296.
  9. Cohen, J. D., and Servan-Schreiber, D. (1992). Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol. Rev. 99, 45-77. doi: 10.1037/0033-295X.99.1.45
  10. Constantinidis, C., Williams, G. V., and Goldman-Rakic, P. S. (2002). A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat. Neurosci. 5, 175-180. doi: 10.1038/nn799
  11. Conway, A. R., Tuholski, S. W., Shisler, R. J., and Engle, R. W. (1999). The effect of memory load on negative priming: an individual differences investigation. Memo. Cogn. 27, 1042-1050. doi: 10.3758/BF03201233
  12. Conway, A. R. A., Kane, M. J., and Engle, R. W. (2003). Working memory capac- ity and its relation to general intelligence. Trends Cogn. Sci. 7, 547-552. doi: 10.1016/j.tics.2003.10.005
  13. de Fockert, J. W., Mizon, G. A., and D'Ubaldo, M. (2010). No negative priming without cognitive control. J. Exp. Psychol. Hum. Percept. Perform. 36, 1333. doi: 10.1037/a0020404
  14. DeSchepper, B., and Treisman, A. (1996). Visual memory for novel shapes: implicit coding without attention. J. Exp. Psychol. Learn. Mem. Cogn. 22, 27-47. doi: 10.1037/0278-7393.22.1.27
  15. de Zubicaray, G., McMahon, K., Eastburn, M., Pringle, A., and Lorenz, L. (2006). Classic identity negative priming involves accessing semantic repre- sentations in the left anterior temporal cortex. Neuroimage 33, 383-390. doi: 10.1016/j.neuroimage.2006.06.024
  16. Egner, T., and Hirsch, J. (2005). The neural correlates and functional integra- tion of cognitive control in a Stroop task. Neuroimage 24, 539-547. doi: 10.1016/j.neuroimage.2004.09.007
  17. Engle, R. W., Conway, A. R. A., Tuholski, S. W., and Shisler, R. J. (1995). A resource account of inhibition. Psychol. Sci. 6, 122-125. doi: 10.1111/j.1467- 9280.1995.tb00318.x
  18. Enright, S. J., and Beech, A. R. (1990). Obsessional states: anxiety disorders or schizotypes? An information processing and personality assessment. Psychol. Med. 20, 621-627. doi: 10.1017/S003329170001713X
  19. Enright, S. J., and Beech, A. R. (1993a). Further evidence of reduced cognitive inhibition in obsessive-compulsive disorder. Pers. Individ. Dif. 14, 387-387. doi: 10.1016/0191-8869(93)90307-O
  20. Enright, S. J., and Beech, A. R. (1993b). Reduced cognitive inhibition in obsessive- compulsive disorder. Br. J. Clin. Psychol. 32, 67-74. doi: 10.1111/j.2044- 8260.1993.tb01028.x
  21. Fletcher, P. C., Shallice, T., Frith, C. D., Frackowiak, R. S., and Dolan, R. J. (1998). The functional roles of prefrontal cortex in episodic memory. II. Retrieval. Brain 121, 1249. doi: 10.1093/brain/121.7.1249
  22. Fox, E. (1995). Pre-cuing target location reduces interference but not nega- tive priming from visual distractors. Q. J. Exp. Psychol. A 48, 26-40. doi: 10.1080/14640749508401373
  23. Frings, C., Rothermund, K., and Wentura, D. (2007). Distractor repetitions retrieve previous responses to targets. Q. J. Exp. Psychol. 60, 1367-1377. doi: 10.1080/17470210600955645
  24. Fuentes, L. J., and Tudela, P. (1992). Semantic processing of foveally and parafoveally presented words in a lexical decision task. Q. J. Exp. Psychol. A 45, 299-322. doi: 10.1080/14640749208401328
  25. Gamboz, N., Russo, R., and Fox, E. (2002). Age differences and the identity neg- ative priming effect: an updated meta-analysis. Psychol. Aging 17, 525. doi: 10.1037/0882-7974.17.3.525
  26. Grison, S., Kessler, K., Paul, M. A., Jordan, H., and Tipper, S. P. (2005a). "Object- and location-based inhibition in goal-directed action: Inhibition of return reveals behavioural and anatomical dissociations and interactions with memory processes," in Attention in Action, eds G. Humphreys and J. Riddoch (London: Psychology Press), 171-207.
  27. Grison, S., Tipper, S. P., and Hewitt, O. (2005b). Long-term negative priming: support for retrieval of prior attentional processes. Q. J. Exp. Psychol. A 58, 1199-1224. doi: 10.1080/02724980443000557
  28. Grison, S., and Strayer, D. L. (2001). Negative priming and perceptual flu- ency: more than what meets the eye. Percept. Psychophys. 63, 1063-1071. doi: 10.3758/BF03194524
  29. Groh-Bordin, C., and Frings, C. (2009). Where has all the inhibition gone? Insights from electrophysiological measures into negative priming with- out probe distractors. Brain Cogn. 71, 92-98. doi: 10.1016/j.bandc.2009. 04.005
  30. Houghton, G., and Tipper, S. P. (1994). "A model of inhibitory mechanisms in selective attention," in Inhibitory Processes in Attention, Memory, and Language, eds D. Dagenback and T. Carr (Florida, FL: Academic Press), 53-112.
  31. Kane, M. J., May, C. P., Hasher, L., Rahhal, T., and Stoltzfus, E. R. (1997). Dual mechanisms of negative priming. J. Exp. Psychol. Hum. Percept. Perform. 23, 632-650. doi: 10.1037/0096-1523.23.3.632
  32. Konishi, S., Chikazoe, J., Jimura, K., Asari, T., and Miyashita, Y. (2005). Neural mechanism in anterior prefrontal cortex for inhibition of pro- longed set interference. Proc. Natl. Acad. Sci. U.S.A. 102, 12584-12588. doi: 10.1073/pnas.0500585102
  33. Laplante, L., Everett, J., and Thomas, J. (1992). Inhibition through negative prim- ing with Stroop stimuli in schizophrenia. Br. J. Clin. Psychol. 31, 307-326. doi: 10.1111/j.2044-8260.1992.tb00998.x
  34. Lepage, M., Ghaffar, O., Nyberg, L., and Tulving, E. (2000). Prefrontal cortex and episodic memory retrieval mode. Proc. Natl. Acad. Sci. U.S.A. 97, 506. doi: 10.1073/pnas.97.1.506
  35. Le Van Quyen, M., Martinerie, J., Navarro, V., Baulac, M., and Varela, F. J. (2001). Characterizing neurodynamic changes before seizures. J. Clin. Neurophysiol. 18, 191-208. doi: 10.1097/00004691-200105000-00001
  36. Long, D. L., and Prat, C. S. (2002). Working memory and stroop interfer- ence: an individual differences investigation. Mem. Cogn. 30, 294-301. doi: 10.3758/BF03195290
  37. Lowe, D. G. (1979). Strategies, context, and the mechanism of response inhibition. Mem. Cogn. 7, 382-389. doi: 10.3758/BF03196943
  38. MacDonald, P. A., and Joordens, S. (2000). Investigating a memory-based account of negative priming: support for selection-feature mismatch. J. Exp. Psychol. Hum. Percept. Perform. 26, 1478-1496. doi: 10.1037/0096-1523.26.4.1478
  39. MacDonald, P. A., Joordens, S., and Seergobin, K. N. (1999). Negative prim- ing effects that are bigger than a breadbox: attention to distractors does not eliminate negative priming, it enhances it. Mem. Cogn. 27, 197-207. doi: 10.3758/BF03211405
  40. MacLeod, C. M. (1992). The Stroop task: the "gold standard" of attentional measures. J. Exp. Psychol. Gen. 121, 12-14. doi: 10.1037/0096-3445.121.1.12
  41. MacLeod, C. M., Dodd, M. D., Sheard, E. D., Wilson, D. E., and Bibi, U. (2003). In opposition to inhibition. Psychol. Learn. Motiv. 43, 163-214. doi: 10.1016/S0079-7421(03)01014-4
  42. MacLeod, C. M., and MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: uncovering the cognitive and neural anatomy of attention. Trends Cogn. Sci. 4, 383-391. doi: 10.1016/S1364-6613(00)01530-8
  43. Macqueen, G. M., Galway, T., Goldberg, J. O., and Tipper, S. P. (2002). Impaired distractor inhibition in patients with schizophrenia on a negative priming task. Psychol. Med. 33, 121-129.
  44. MacWhinney, B., Leinbach, J., Taraban, R., and McDonald, J. (1989). Language learning: cues or rules? J. Mem. Lang. 28, 255-277. doi: 10.1016/0749- 596X(89)90033-8
  45. Malley, G. B., and Strayer, D. L. (1995). Effect of stimulus repetition on pos- itive and negative identity priming. Percept. Psychophys. 57, 657-667. doi: 10.3758/BF03213271
  46. May, C. P., Kane, M. J., and Hasher, L. (1995). Determinants of negative priming. Psychol. Bull. 118, 35-54. doi: 10.1037/0033-2909.118.1.35
  47. Mayr, S., and Buchner, A. (2007). Negative priming as a memory phenomenon: a review of 20 years of negative priming research. Z. Psychol./J. Psychol. 215, 35. doi: 10.1027/0044-3409.215.1.35
  48. Mayr, U., Diedrichsen, J., Ivry, R., and Keele, S. W. (2006). Dissociating task-set selection from task-set inhibition in the prefrontal cortex. J. Cogn. Neurosci. 18, 14-21. doi: 10.1162/089892906775250085
  49. Miller, E. K., and Cohen, J. D. (2001). An integrative theory of pre- frontal cortex function. Annu. Rev. Neurosci. 24, 167-202. doi: 10.1146/annurev.neuro.24.1.167
  50. Milliken, B., Joordens, S., Merikle, P. M., and Seiffert, A. E. (1998). Selective atten- tion: a reevaluation of the implications of negative priming. Psychol. Rev. 105, 203-229. doi: 10.1037/0033-295X.105.2.203
  51. Milliken, B., Tipper, S. P., and Weaver, B. (1994). Negative priming in a spatial localization task: feature mismatching and distractor inhibition. J. Exp. Psychol. Hum. Percept. Perform. 20, 624. doi: 10.1037/0096-1523.20.3.624
  52. Moore, C. M. (1994a). Negative priming depends on probe-trial conflict: where has all the inhibition gone? Percept. Psychophys. 56, 133-147. doi: 10.3758/BF03213892
  53. Moore, C. M. (1994b). Negative priming depends on probe-trial conflict: where has all the inhibition gone? Attent. Percept. Psychophys. 56, 133-147. doi: 10.3758/BF03213892
  54. Neill, W. T. (1977). Inhibitory and facilitatory processes in selective atten- tion. J. Exp. Psychol. Hum. Percept. Perform. 3, 444-450. doi: 10.1037/0096- 1523.3.3.444
  55. Neill, W. T., Terry, K. M., and Valdes, L. A. (1994). Negative priming without probe selection. Psychon. Bull. Rev. 1, 119-121. doi: 10.3758/BF03200767
  56. Neill, W. T., and Valdes, L. A. (1992). Persistence of negative priming: steady state or decay. J. Exp. Psychol. Learn. Mem. Cogn. 18, 565-576. doi: 10.1037/0278- 7393.18.3.565
  57. O'Reilly, R. C., Braver, T. S., and Cohen, J. D. (1999). "A biologically based computational model of working memory," in Models of working memory: Mechanisms of active maintenance and executive control, eds A. Miyake, and P. Shah (New York, NY: Cambridge University Press), 375-411. doi: 10.1017/ CBO9781139174909.014
  58. Park, J., and Kanwisher, N. (1994). Negative priming for spatial locations: identity mismatching, not distractor inhibition. J. Exp. Psych. Hum. Percept. Perform. 20, 613-623. doi: 10.1037/0096-1523.20.3.613
  59. Pratt, J., Spalek, T. M., and Bradshaw, F. (1999). The time to detect targets at inhib- ited and noninhibited locations: preliminary evidence for attentional momen- tum. J. Exp. Psychol. Hum. Percept. Perform. 25, 730-746. doi: 10.1037/0096- 1523.25.3.730
  60. Raz, A., and Campbell, N. K. J. (2011). Can suggestion obviate reading? Supplementing primary Stroop evidence with exploratory negative priming analyses. Conscious. Cogn. 20, 312-320. doi: 10.1016/j.concog.2009.09.013
  61. Raz, A., Shapiro, T., Fan, J., and Posner, M. I. (2002). Hypnotic suggestion and the modulation of Stroop interference. Arch. Gen. Psychiatry 59, 1155. doi: 10.1001/archpsyc.59.12.1155
  62. Rothermund, K., Wentura, D., and De Houwer, J. (2005). Retrieval of incidental stimulus-response associations as a source of negative priming. J. Exp. Psychol. Learn. Mem. Cogn. 31, 482-495. doi: 10.1037/0278-7393.31.3.482
  63. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). "Learning inter- nal representations by error propagation," in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations (Cambridge, MA: MIT Press), 318-362.
  64. Salo, R., Robertson, L. C., and Nordahl, T. E. (1996). Normal sustained effects of selective attention are absent in schizophrenic patients withdrawn from medication. Psychiatry Res. 62, 121-130. doi: 10.1016/0165-1781(96)02804-1
  65. Schrobsdorff, H., Ihrke, M., Behrendt, J., Hasselhorn, M., and Herrmann, J. M. (2012a). Inhibition in the dynamics of selective attention: an integrative model for negative priming. Front. Psychol. 3:491. doi: 10.3389/fpsyg.2012.00491
  66. Schrobsdorff, H., Ihrke, M., Behrendt, J., Herrmann, J. M., and Hasselhorn, M. (2012b). Identity negative priming: a phenomenon of perception, recognition or selection? PLoS ONE 7:e32946. doi: 10.1371/journal.pone.0032946
  67. Schrobsdorff, H., Ihrke, M., Kabisch, B., Behrendt, J., Hasselhorn, M., and Michael Herrmann, J. (2007). A computational approach to negative priming. Connect. Sci. 19, 203-221. doi: 10.1080/09540090701507823
  68. Steel, C., Haworth, E. J., Peters, E., Hemsley, D. R., Sharma, T., Gray, J. A., et al. (2001). Neuroimaging correlates of negative priming. Neuroreport 12, 3619-3624. doi: 10.1097/00001756-200111160-00049
  69. Stein, D. J., and Ludik, J. (2000). A neural network of obsessive-compulsive disor- der: modelling cognitive disinhibition and neurotransmitter dysfunction. Med. Hypotheses 55, 168-176. doi: 10.1054/mehy.1999.1028
  70. Strayer, D. L., and Grison, S. (1999). Negative identity priming is contingent on stimulus repetition. J. Exp. Psychol. Hum. Percept. Perform. 25, 24-38. doi: 10.1037/0096-1523.25.1.24
  71. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643-662. doi: 10.1037/h0054651
  72. Tipper, S. P. (1985). The negative priming effect: inhibitory priming by ignored objects. Q. J. Exp. Psychol. A 37, 571-590. doi: 10.1080/14640748508400920
  73. Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views. Q. J. Exp. Psychol. A 54, 321-343. doi: 10.1080/02724980042000183
  74. Tipper, S. P., and Cranston, M. (1985). Selective attention and priming: inhibitory and facilitatory effects of ignored primes. Q. J. Exp. Psychol. A 37, 591-611. doi: 10.1080/14640748508400921
  75. Tipper, S. P., Weaver, B., Cameron, S., Brehaut, J. C., and Bastedo, J. (1991). Inhibitory mechanisms of attention in identification and localization tasks: time course and disruption. J. Exp. Psychol. Learn. Mem. Cogn. 17, 681-692. doi: 10.1037/0278-7393.17.4.681
  76. Titz, C., Behrendt, J., and Hasselhorn, M. (2003). Ist der Negative Priming Effekt tatsächlich altersinvariant? Zeitschrift für Gerontopsychologie and -psychiatrie 16, 169-175. doi: 10.1024/1011-6877.16.4.169
  77. Ungar, L., Nestor, P. G., Niznikiewicz, M. A., Wible, C. G., and Kubicki, M. (2010). Color Stroop and negative priming in schizophrenia: an fMRI study. Psychiatry Res. 181, 24-29. doi: 10.1016/j.pscychresns.2009.07.005
  78. von Hecker, U., and Conway, M. (2009). Magnitude of negative priming varies with conceptual task difficulty: attentional resources are involved in episodic retrieval processes. Q. J. Exp. Psychol. 63, 666-678. doi: 10.1080/17470210903080711
  79. Vuilleumier, P., Schwartz, S., Duhoux, S., Dolan, R. J., and Driver, J. (2005). Selective attention modulates neural substrates of repetition priming and "Implicit" visual memory: suppressions and enhancements revealed by fMRI. J. Cogn. Neurosci. 17, 1245-1260. doi: 10.1162/0898929055002409
  80. Williams, L. M. (1995). Further evidence for a multidimensional personality dispo- sition to schizophrenia in terms of cognitive inhibition. Br. J. Clin. Psychol. 34, 193-213. doi: 10.1111/j.2044-8260.1995.tb01454.x
  81. Williams, L. M. (1996). Cognitive inhibition and schizophrenic symptom sub- groups. Schizophr. Bull. 22, 139-151. doi: 10.1093/schbul/22.1.139
  82. Wood, T. J., and Milliken, B. (1998). Negative priming without ignoring. Psychon. Bull. Rev. 5, 470-475. doi: 10.3758/BF03208824
  83. Wright, C. I., Keuthen, N. J., Savage, C. R., Martis, B., Williams, D., Wedig, M., et al. (2006). Brain correlates of negative and positive visuospatial priming in adults. Neuroimage 30, 983-991. doi: 10.1016/j.neuroimage.2005.10.015
  84. Wright, C. I., McMullin, K., Martis, B., Fischer, H., and Rauch, S. L. (2005). Brain correlates of negative visuospatial priming in healthy children. Psychiatry Res. 139, 41-52. doi: 10.1016/j.pscychresns.2005.03.001