Electrically tunable effective g-factor of a single hole in a lateral GaAs/AlGaAs quantum dot (original) (raw)

Electrically tunable g factors in quantum dot molecular spin states

PHYSICAL REVIEW LETTERS, 2006

We present a magneto-photoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g-factors of different spin states that have molecular wavefunctions distributed over both quantum dots. We propose a phenomenological model for the change in g-factor based on resonant changes in the amplitude of the wavefunction in the barrier due to the formation of bonding and antibonding orbitals.

In situ tunable g factor for a single electron confined inside an InAs quantum dot molecule

Physical Review B, 2011

Tailoring the properties of single spins confined in self-assembled quantum dots (QDs) is critical to the development of new optoelectronic logic devices. However, the range of heterostructure engineering techniques that can be used to control spin properties is severely limited by the requirements of QD self-assembly. We demonstrate a new strategy for rationally engineering the spin properties of single confined electrons or holes by adjusting the composition of the barrier between a stacked pair of InAs QDs coupled by coherent tunneling to form a quantum dot molecule (QDM). We demonstrate this strategy by designing, fabricating, and characterizing a QDM in which the g factor for a single confined electron can be tuned in situ by over 50% with a minimal change in applied voltage.

Electrically-tunable hole g-factor of an optically-active quantum dot for fast spin rotations

We report a large g-factor tunability of a single hole spin in an InGaAs quantum dot via an electric field. The magnetic field lies in the in-plane direction x, the direction required for a coherent hole spin. The electrical field lies along the growth direction z and is changed over a large range, 100 kV/cm. Both electron and hole g-factors are determined by high resolution laser spectroscopy with resonance fluorescence detection. This, along with the low electrical-noise environment, gives very high quality experimental results. The hole g-factor g x h depends linearly on the electric field Fz, dg x h /dFz = (8.3 ± 1.2) · 10 −4 cm/kV, whereas the electron g-factor g x e is independent of electric field, dg x e /dFz = (0.1 ± 0.3) · 10 −4 cm/kV (results averaged over a number of quantum dots). The dependence of g x h on Fz is well reproduced by a 4 × 4 k·p model demonstrating that the electric field sensitivity arises from a combination of soft hole confining potential, an In concentration gradient and a strong dependence of material parameters on In concentration. The electric field sensitivity of the hole spin can be exploited for electrically-driven hole spin rotations via the g-tensor modulation technique and based on these results, a hole spin coupling as large as ∼ 1 GHz is expected to be envisaged.

Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

Journal of Applied Physics, 2017

In this article we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for single qubit manipulation for possible quantum computer applications.

Spin-dependent tunneling into an empty lateral quantum dot

Physical Review B, 2010

], we investigate single electron tunneling into an empty quantum dot in presence of a magnetic field. We numerically calculate the tunneling rate from a laterally confined, few-channel external lead into the lowest orbital state of a spin-orbit coupled quantum dot. We find two mechanisms leading to a spin-dependent tunneling rate. The first originates from different electronic g-factors in the lead and in the dot, and favors the tunneling into the spin ground (excited) state when the gfactor magnitude is larger (smaller) in the lead. The second is triggered by spin-orbit interactions via the opening of off-diagonal spin-tunneling channels. It systematically favors the spin excited state. For physical parameters corresponding to lateral GaAs/AlGaAs heterostructures and the experimentally reported tunneling rates, both mechanisms lead to a discrepancy of ∼10% in the spin up vs spin down tunneling rates. We conjecture that the significantly larger discrepancy observed experimentally originates from the enhancement of the g-factor in laterally confined lead.

Tunable Spin-Splitting and Spin-Resolved Ballistic Transport in GaAs/AlGaAs Two-Dimensional Holes

Physical Review Letters, 1998

We report quantitative experimental and theoretical results revealing the tunability of spin splitting in high-mobility two-dimensional GaAs hole systems, confined to either a square or a triangular quantum well, via the application of a surface-gate bias. The spin splitting depends on both the hole density and the symmetry of the confinement potential and is largest for the highest densities in asymmetric potentials. In the triangular well, when the spin splitting is sufficiently large, our measured commensurability oscillations, induced by a one-dimensional periodic potential, exhibit two frequencies providing clear evidence for spin-resolved ballistic transport. [S0031-9007(98)06750-7]

Electric Dipole Spin Resonance for Heavy Holes in Quantum Dots

Physical Review Letters, 2007

We propose and analyze a new method for manipulation of a heavy hole spin in a quantum dot. Due to spin-orbit coupling between states with different orbital momenta and opposite spin orientations, an applied rf electric field induces transitions between spin-up and spin-down states. This scheme can be used for detection of heavy-hole spin resonance signals, for the control of the spin dynamics in two-dimensional systems, and for determining important parameters of heavy-holes such as the effective g-factor, mass, spin-orbit coupling constants, spin relaxation and decoherence times.

Electric field tunable exchange interaction in InAs/GaAs coupled quantum dots

2009

Spin manipulation in coupled quantum dots is of interest for quantum information applications. Control of the exchange interaction between electrons and holes via an applied electric field may provide a promising technique for such spin control. Polarization dependent photoluminescence (PL) spectra were used to investigate the spin dependent interactions in coupled quantum dot systems and by varying an electric field, the ground state hole energy levels are brought into resonance, resulting in the formation of molecular orbitals observed as anticrossings between the direct and indirect transitions in the spectra. The indirect and direct transitions of the neutral exciton demonstrate high and low circular polarization memory respectively due to variation in the exchange interaction. The ratio between the polarization values as a function of electric field, and the barrier height was measured. These results indicate a possible method of tuning between indirect and direct configurations to control the degree of exchange interaction.

Electrical control of optically pumped electron spin in a single GaAs/AlAs quantum dot fabricated by nanohole infilling

Physical Review B

We demonstrate here electrical control of the sign of the circularly polarized emission from the negatively charged trion, going from co-to contrapolarized with respect to the circular polarization of the laser, using a GaAs/AlAs quantum dot (QD) embedded in a field effect structure. The voltage range over which the trion is negatively (contra) circularly polarized is shown to be dependent on the laser excitation energy within the P-shell resonance. The negative polarization never exceeds ∼ − 15%, in stark contrast to measurements on InAs/GaAs QDs reported by M. E. Ware et al. [Phys. Rev. Lett. 95, 177403 (2005).] in which a negative polarization reaching −95% was observed. This result is shown to be a consequence of the low-symmetry confinement potential of these GaAs/AlAs QD, which are fabricated by partial infilling of asymmetric droplet-etched nanoholes. This low QD symmetry also leads to optical activity of the dark spin configuration of the triplet state, which we measure experimentally by photoluminescence excitation spectroscopy. A simple, semiquantitative model explaining both the optical activity of the dark spin configuration and the maximum degree of negative polarization is presented.