Modelling and analysis of time-lags in cell proliferation (original) (raw)

In this paper, we present a systematic approach for obtaining qualitatively and quantitatively correct mathematical models of some biological phenomena with time-lags. Features of our approach are the development of a hierarchy of related models and the estimation of parameter values, along with their non-linear biases and standard deviations, for sets of experimental data. We demonstrate our method of solving parameter estimation problems for neutral delay differential equations by analyzing some models of cell growth that incorporate a time-lag in the cell division phase. We show that these models are more consistent with certain reported data than the classic exponential growth model. Although the exponential growth model provides estimates of some of the growth characteristics, such as the population-doubling time, the time-lag growth models can additionally provide estimates of: (i) the fraction of cells that are dividing, (ii) the rate of commitment of cells to cell division, (iii) the initial distribution of cells in the cell cycle, and (iv) the degree of synchronization of cells in the (initial) cell population.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.