First-grade predictors of mathematical learning disability: A latent class trajectory analysis (original) (raw)

Cognitive predictors of children's development in mathematics achievement: A latent growth modeling approach

Developmental science, 2018

Research has identified various domain-general and domain-specific cognitive abilities as predictors of children's individual differences in mathematics achievement. However, research into the predictors of children's individual growth rates, namely between-person differences in within-person change in mathematics achievement is scarce. We assessed 334 children's domain-general and mathematics-specific early cognitive abilities and their general mathematics achievement longitudinally across four time-points within the first and second grades of primary school. As expected, a constellation of multiple cognitive abilities contributed to the children's starting level of mathematical success. Specifically, latent growth modeling revealed that WM abilities, IQ, counting skills, nonsymbolic and symbolic approximate arithmetic and comparison skills explained individual differences in the children's initial status on a curriculum-based general mathematics achievement tes...

Mathematical Difficulties vs. High Achievement: An Analysis of Arithmetical Cognition in Elementary School

Developmental Neuropsychology, 2020

This study analyzed the contribution of cognitive processes (planning, attention , simultaneous and successive processing) and domain-specific skills (counting, number processing and conceptual comprehension) to the arithmetic performance achieved in the last three grades (4th, 5th, and 6th) of elementary school. Three groups of students with a different arithmetic achievement level were characterized. The predictive value of the cognitive processes and the math specific skills are explored through diverse covar-iance and discriminant analyses. Participants were 110 students (M = 10.5 years, SD = 1.17) classified in three groups: mathematical difficulties (MD; n = 26), high achieving (HA; n = 26), and typical achieving (TA; n = 58). Cognitive processes and domain-specific skills were evaluated in two individual sessions at the end of the school year. Nonverbal intelligence was assessed in a final collective session with each class. The mathematical difficulties group's achievement was deficient in simultaneous and successive processing, number processing, and conceptual comprehension compared to the typical achievement group. High achievement children obtained significantly better results than the typical achievement children in simultaneous processing, counting, number processing, and conceptual comprehension. Number processing and conceptual comprehension were the most consistent classifiers, although successive and simultaneous processing, respectively , also contributed to identifying students with mathematical difficulties and high achievement. These findings have practical implications for preventive and intervention proposals linked to the observed profiles. ARTICLE HISTORY