Linkage of national soil quality measurements to primary care medical records in England and Wales: a new resource for investigating environmental impacts on human health (original) (raw)

The Link between Soil Geochemistry in South-West England and Human Exposure to Soil Arsenic

Minerals

The aim of this research is to use the whole soil geochemistry and selected bioaccessibility measurements, using the BioAcessibility Research Group of Europe (BARGE) method, on the same soils to identify the geochemical controls on arsenic (As) bioaccessibility and to gain an understanding of its spatial distribution in south-west England. The total element concentrations of 1154 soils were measured with As concentrations ranging from 4.7–1948 mg·kg−1, with the bioaccessible As of 50 selected soils ranging from 0.6–237 mg·kg−1. A Self Modelling Mixture Resolution approach was applied to the total soil element chemistry to identify the intrinsic soil constituents (ISCs). The ISCs were used as predictor variables and As bioaccessibility as the dependant variables in a regression model for the prediction of As bioaccessibility at all soil locations to examine its regional spatial distribution. This study has shown that bioaccessibility measurements can be directly linked to the geochem...

Use of a physiologically based extraction test to estimate the human bioaccessibility of potentially toxic elements in urban soils from the city of Glasgow, UK

Environmental geochemistry and health, 2010

A simple, two-stage, physiologically based extraction has been applied to assess the human bioaccessibility of potentially toxic elements (PTE) in 20 urban soils from a major UK city. Chromium and iron bioaccessibilities were found to be markedly higher in the intestinal phase, whilst lead and zinc bioaccessibilities were higher in the stomach. Copper and manganese bioaccessibilities were generally similar under both extraction conditions. Principal component analysis was used to study relationships amongst bioaccessible element concentrations and land use. Distinctions could be observed between the distributions of the urban metals—copper, lead and zinc—and metals predominantly of geogenic origin, such as iron. There was no clear delineation between roadside soils and soils obtained from public parks. Bioaccessible analyte concentrations were found to be correlated with pseudototal (aqua regia soluble) analyte concentrations for all elements except iron. Results of the BCR sequential extraction did not, in general, provide a good indication of human bioaccessibility. Comparison of bioaccessible PTE concentrations with toxicological data indicated that lead is the element of greatest concern in these soils but that levels are unlikely to pose a health risk to children with average soil intake.

ntial soil and household dust in Cornwall , south west England : potential human exposure and the in fl uence of historical mining †

2017

Exposure to arsenic (As) via residential soil and dust is a global concern, in regions affected bymining or with elevated concentrations present in underlying geology. Cornwall in south west England is one such area. Residential soil (n 1⁄4 127) and household dust (n 1⁄4 99) samples were collected from across Cornwall as part of a wider study assessing exposure to environmental As. Samples were analysed for total As (soil and dust samples) and human ingestion bioaccessible As (soil samples from properties with homegrown produce). Arsenic concentrations ranged from 12 to 992 mg kg 1 in soil and 3 to 1079 mg kg 1 in dust and were significantly higher in areas affected by metalliferous mineralisation. Sixty-nine percent of soils exceeded the 37 mg kg 1 Category 4 Screening Level (C4SL), a generic assessment criteria for As in residential soils in England, which assumes 100% bioavailability following ingestion. The proportion of exceedance was reduced to 13% when the bioavailability par...

Arsenic in residential soil and household dust in Cornwall, south west England: potential human exposure and the influence of historical mining

Environmental science. Processes & impacts, 2017

Exposure to arsenic (As) via residential soil and dust is a global concern, in regions affected by mining or with elevated concentrations present in underlying geology. Cornwall in south west England is one such area. Residential soil (n = 127) and household dust (n = 99) samples were collected from across Cornwall as part of a wider study assessing exposure to environmental As. Samples were analysed for total As (soil and dust samples) and human ingestion bioaccessible As (soil samples from properties with home-grown produce). Arsenic concentrations ranged from 12 to 992 mg kg(-1) in soil and 3 to 1079 mg kg(-1) in dust and were significantly higher in areas affected by metalliferous mineralisation. Sixty-nine percent of soils exceeded the 37 mg kg(-1) Category 4 Screening Level (C4SL), a generic assessment criteria for As in residential soils in England, which assumes 100% bioavailability following ingestion. The proportion of exceedance was reduced to 13% when the bioavailability...

Health Risk Assessment of Trace Elements in Soil for People Living and Working in a Mining Area

Journal of Environmental and Public Health, 2021

The present study used soils collected from a small-scale gold mine area to determine the health risks due to trace elements to the at-risk population in the study area. The work involved 74 soil samples from four sampling categories: 29 samples were from the mining pits (MD), 18 samples from the first washing area (WA), 17 samples from the second washing area (WB), and 10 samples from the control area (C). All samples were analyzed for Cr, Cu, As, Pb, Cd, Co, Ni, Zn, and Hg using the Energy Dispersive X-Ray Florescence (ED-XRF) method. Trace element levels were found to vary across the four sampling categories. The concentrations of trace elements recorded from different sampling categories varied in an increasing order of MD > WA > WB > C. Mercury was detected in the highest levels (max. 3.72 ± 0.15) at WB while it was not detected in the samples from C. Samples from MD indicated that Cu (max. 737.66 ± 1.3 mg/kg) was found in the highest levels whereas Hg (mean = 0.007 mg...