NMR studies of retinal proteins (original) (raw)
Related papers
Distorted Structure of the Retinal Chromophore in Bacteriorhodopsin Resolved by 2H-NMR
Biochemistry, 1994
Structural details about the geometry of the retinal chromophore in the binding pocket of bacteriorhodopsin are revealed by measuring the orientations of its individual methyl groups. Solid-state 2H-NMR measurements were performed on macroscopically oriented samples of purple membrane patches, containing retinal specifically deuterium-labeled at one of the three methyl groups along the polyene chain (Clg, C19, C20). The deuterium quadrupole splitting of each "zero-tilt" spectrum is used to calculate the orientation of the corresponding C-CD3 bond vector with respect to the membrane normal; however, two possible solutions may arise. These ambiguities in angle could be resolved by recording a tilt series of spectra at different sample inclinations to the magnetic field and analyzing the resulting complex line shapes with the aid of computer simulations. The angles for the C18, C19, and C20 group are found to be 37 f l o , 40 f 1 O , and 32 i 1 O , respectively. These highly accurate values imply that the polyene chain of the retinal chromophore is not straight but rather has an in-plane curvature and possibly an out-of-plane twist. Together with the angles of the remaining methyl groups on the cyclohexene ring that have been measured previously, an overall picture has thus emerged of the intramolecular conformation and the three-dimensional orientation of retinal within bacteriorhodopsin. The deduced geometry confirms and refines the known structural information on the chromophore, suggesting that this 2H-NMR strategy may serve as a valuable tool for other membrane proteins. Abstract published in Advance ACS Abstracts, April 15, 1994. Abbreviations: 2H-NMR, deuterium nuclear magnetic resonance; BR, bacteriorhodopsin; PM, purple membrane; AUQ, quadrupole splitting.
Deuterium NMR Structure of Retinal in the Ground State of Rhodopsin †
Biochemistry, 2004
The conformation of retinal bound to the G protein-coupled receptor rhodopsin is intimately linked to its photochemistry, which initiates the visual process. Site-directed deuterium ( 2 H) NMR spectroscopy was used to investigate the structure of retinal within the binding pocket of bovine rhodopsin. Aligned recombinant membranes were studied containing rhodopsin that was regenerated with retinal 2 H-labeled at the C 5 , C 9 , or C 13 methyl groups by total synthesis. Studies were conducted at temperatures below the gel to liquid-crystalline phase transition of the membrane lipid bilayer, where rotational and translational diffusion of rhodopsin is effectively quenched. The experimental tilt series of 2 H NMR spectra were fit to a theoretical line shape analysis [Nevzorov, A. A., Moltke, S., Heyn, M. P., and Brown, M. F. (1999) J. Am. Chem. Soc. 121,[7636][7637][7638][7639][7640][7641][7642][7643] giving the retinylidene bond orientations with respect to the membrane normal in the dark state. Moreover, the relative orientations of pairs of methyl groups were used to calculate effective torsional angles between different planes of unsaturation of the retinal chromophore. Our results are consistent with significant conformational distortion of retinal, and they have important implications for quantum mechanical calculations of its electronic spectral properties. In particular, we find that the -ionone ring has a twisted 6-s-cis conformation, whereas the polyene chain is twisted 12-s-trans. The conformational strain of retinal as revealed by solid-state 2 H NMR is significant for explaining the quantum yields and mechanism of its ultrafast photoisomerization in visual pigments. This work provides a consensus view of the retinal conformation in rhodopsin as seen by X-ray diffraction, solid-state NMR spectroscopy, and quantum chemical calculations. mean square deviation; MNDO, modified neglect of diatomic overlap; TD, transition dipole.
Photochemistry and Photobiology, 2009
Solid-state NMR spectroscopy gives a powerful avenue for investigating G protein-coupled receptors and other integral membrane proteins in a native-like environment. This article reviews the use of solid-state 2 H NMR to study the retinal cofactor of rhodopsin in the dark state as well as the meta I and meta II photointermediates. Site-specific 2 H NMR labels have been introduced into three regions (methyl groups) of retinal that are crucially important for the photochemical function of rhodopsin. Despite its phenomenal stability 2 H NMR spectroscopy indicates retinal undergoes rapid fluctuations within the protein binding cavity. The spectral lineshapes reveal the methyl groups spin rapidly about their three-fold (C 3 ) axes with an order parameter for the off-axial motion of S C3 % 0:9: For the dark state, the 2 H NMR structure of 11-cis-retinal manifests torsional twisting of both the polyene chain and the b-ionone ring due to steric interactions of the ligand and the protein. Retinal is accommodated within the rhodopsin binding pocket with a negative pretwist about the C11=C12 double bond. Conformational distortion explains its rapid photochemistry and reveals the trajectory of the 11-cis to trans isomerization. In addition, 2 H NMR has been applied to study the retinylidene dynamics in the dark and light-activated states. Upon isomerization there are drastic changes in the mobility of all three methyl groups. The relaxation data support an activation mechanism whereby the b-ionone ring of retinal stays in nearly the same environment, without a large displacement of the ligand. Interactions of the b-ionone ring and the retinylidene Schiff base with the protein transmit the force of the retinal isomerization. Solid-state 2 H NMR thus provides information about the flow of energy that triggers changes in hydrogen-bonding networks and helix movements in the activation mechanism of the photoreceptor. †This paper is part of the
Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2010
Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state 2 H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific 2 H labels have been introduced into the methyl groups of retinal and solid-state 2 H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent 2 H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the β-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the β4 strand of the E2 loop and the side chains of Glu 122 and Trp 265 within the binding pocket. The solid-state 2 H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.
Structure and dynamics of retinal in rhodopsin elucidated by deuterium solid state NMR
2004
Rhodopsin is a seven transmembrane helix GPCR found which mediates dim light vision, in which the binding pocket is occupied by the ligand 11- cis-retinal. A site-directed 2H-labeling approach utilizing solid-state 2H NMR spectroscopy was used to investigate the structure and dynamics of retinal within its binding pocket in the dark state of rhodopsin, and as well the MetaI and
Solid-State 2H NMR spectroscopy of retinal proteins in aligned membranes
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2007
Solid-state 2 H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2 H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C 2 H 3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2 H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark-and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the "business end" of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the β-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2 H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2 H NMR is thus illuminating in terms of their different biological functions.
Solid-state NMR studies on the mechanism of the opsin shift in the visual pigment rhodopsin
Biochemistry, 1990
Solid-state 13C NMR spectra have been obtained of bovine rhodopsin and isorhodopsin regenerated with retinal selectively 13C labeled along the polyene chain. In rhodopsin, the chemical shifts for 13C-5, 13C-6, 13C-7,13C-14, and 13C-15 correspond closely to the chemical shifts observed in the 11-cis protonated Schiff base (PSB) model compound. Differences in chemical shift relative to the 11-cis PSB chloride salt are observed for positions 8 through 13, with the largest deshielding (6.2 ppm) localized at position 13. The localized deshielding at C-13 supports previous models of the opsin shift in rhodopsin that place a protein perturbation in the vicinity of position 13. Spectra obtained of isorhodopsin regenerated with 13C-labeled 9-c«-retinals reveal large perturbations at 13C-7 and I3C-13. The similar deshielding of the 13C-13 resonance in both pigments supports the presence of a protein perturbation near position 13. However, the chemical shifts at positions 7 and 12 in isorhodopsin are not analogous to those observed in rhodopsin and suggest that the binding site interactions near these positions are different for the two pigments. The implications of these results for the mechanism of the opsin shift in these proteins are discussed.
Biochemistry, 2000
The bacterial proton pump bacteriorhodopsin (BR) is a 26.5 kDa seven-transmembrane helical protein. Several structural models have been published at g1.55 Å resolution. The initial cis-trans isomerization of the retinal moiety involves structural changes within <1 Å. To understand the chromophore-protein interactions that are important for light-driven proton transport, very accurate measurements of the protein geometry are required. To reveal more structural details at the site of the retinal, we have, therefore, selectively labeled the tryptophan side chains of BR with 15 N and metabolically incorporated retinal, 13 C-labeled at position 14 or 15. Using these samples, heteronuclear distances were measured with high accuracy using SFAM REDOR magic angle spinning solid-state NMR spectroscopy in darkadapted bacteriorhodopsin. This NMR technique is applied for the first time to a high-molecular mass protein. Two retinal conformers are distinguished by their different isotropic 14-13 C chemical shifts. Whereas the C14 position of 13-cis-15-syn-retinal is 4.2 Å from [indole-15 N]Trp86, this distance is 3.9 Å in the all-trans-15-anti conformer. This latter distance allows us to check on the details of the active center of BR in the various published models derived from X-ray and electron diffraction data. The experimental approach and the results reported in this paper enforce the notion that distances between residues of a membrane protein binding pocket and a bound ligand can be determined at subangstrom resolution. † The work of D.O. was supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 533).
FEBS Letters, 1998
Rhodopsin is the retinal photoreceptor responsible for visual signal transduction. To determine the orientation and conformation of retinal within the binding pocket of this membrane bound receptor, an ab initio solid state 2 H NMR approach was used. Bovine rhodopsin containing 11-cis retinal, specifically deuterated at its methyl groups at the C 19 or C 20 position, was uniaxially oriented in DMPC bilayers. Integrity of the membranes and quality of alignment were monitored by 31 P NMR. Analysis of the obtained 2 H NMR spectra provided angles for the individual labelled chemical bond vectors leading to an overall picture for the three dimensional structure of the polyene chain of the chromophore in the protein binding pocket around the Schiff base attachment site.
Journal of Molecular Biology, 2007
Rhodopsin is a prototype for G protein-coupled receptors (GPCRs) that are implicated in many biological responses in humans. A site-directed 2 H NMR approach was used for structural analysis of retinal within its binding cavity in the dark and pre-activated meta I states. Retinal was labeled with 2 H at the C5, C9, or C13 methyl groups by total synthesis, and was used to regenerate the opsin apoprotein. Solid-state 2 H NMR spectra were acquired for aligned membranes in the low-temperature lipid gel phase versus the tilt angle to the magnetic field. Data reduction assumed a static uniaxial distribution, and gave the retinylidene methyl bond orientations plus the alignment disorder (mosaic spread). The darkstate 2 H NMR structure of 11-cis-retinal shows torsional twisting of the polyene chain and the β-ionone ring. The ligand undergoes restricted motion, as evinced by order parameters of ≈ 0.9 for the spinning C-C 2 H 3 groups, with off-axial fluctuations of ≈ 15°. Retinal is accommodated within the rhodopsin binding pocket with a negative pre-twist about the C11 = C12 double bond that explains its rapid photochemistry and the trajectory of 11-cis to trans isomerization. In the cryo-trapped meta I state, the 2 H NMR structure shows a reduction of the polyene strain, while torsional twisting of the β-ionone ring is maintained. Distortion of the retinal conformation is interpreted through substituent control of receptor activation. Steric hindrance between trans retinal and Trp265 can trigger formation of the subsequent activated meta II state. Our results are pertinent to quantum and molecular mechanics simulations of ligands bound to GPCRs, and illustrate how 2 H NMR can be applied to study their biological mechanisms of action.