Amygdala and Emotional Modulation of Multiple Memory Systems (original) (raw)
Related papers
Stress, memory and the amygdala
Nature Reviews Neuroscience, 2009
| Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive -severe stress often turns them into a source of chronic anxiety.
Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation within the Amygdala
Frontiers in Behavioral Neuroscience, 2016
Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR) and norepinephrine release within the amygdala leads to the mobilization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research.
The amygdala modulates the consolidation of memories of emotionally arousing experiences
Annual Review of Neuroscience, 2004
Converging findings of animal and human studies provide compelling evidence that the amygdala is critically involved in enabling us to acquire and retain lasting memories of emotional experiences. This review focuses primarily on the findings of research investigating the role of the amygdala in modulating the consolidation of long-term memories. Considerable evidence from animal studies investigating the effects of posttraining systemic or intra-amygdala infusions of hormones and drugs, as well as selective lesions of specific amygdala nuclei, indicates that (a) the amygdala mediates the memory-modulating effects of adrenal stress hormones and several classes of neurotransmitters; (b) the effects are selectively mediated by the basolateral complex of the amygdala (BLA); (c) the influences involve interactions of several neuromodulatory systems within the BLA that converge in influencing noradrenergic and muscarinic cholinergic activation; (d) the BLA modulates memory consolidation via efferents to other brain regions, including the caudate nucleus, nucleus accumbens, and cortex; and (e) the BLA modulates the consolidation of memory of many different kinds of information. The findings of human brain imaging studies are consistent with those of animal studies in suggesting that activation of the amygdala influences the consolidation of long-term memory; the degree of activation of the amygdala by emotional arousal during encoding of emotionally arousing material (either pleasant or unpleasant) correlates highly with subsequent recall. The activation of neuromodulatory systems affecting the BLA and its projections to other brain regions involved in processing different kinds of information plays a key role in enabling emotionally significant experiences to be well remembered.
Amygdala modulation of memory-related processes in the hippocampus: potential relevance to PTSD
Progress in brain research, 2008
A key assumption in the study of stress-induced cognitive and neurobiological modifications is that alterations in hippocampal functioning after stress are due to an excessive activity exerted by the amygdala on the hippocampus. Research so far focused on stress-induced impairment of hippocampal plasticity and memory but an exposure to stress may simultaneously also result in strong emotional memories. In fact, under normal conditions emotionally charged events are better remembered compared with neutral ones. Results indicate that under these conditions there is an increase in activity within the amygdala that may lead to memory of a different quality. Studying the way emotionality activates the amygdala and the functional impact of this activation we found that the amygdala modulates memory-related processes in other brain areas, such as the hippocampus. However, this modulation is complex, involving both enhancing and suppressing effects, depending on the way the amygdala is acti...
Stress and memory: behavioral effects and neurobiological mechanisms
Neural plasticity, 2007
Stress is a potent modulator of learning and memory processes. Although there have been a few attempts in the literature to explain the diversity of effects (including facilitating, impairing, and lack of effects) described for the impact of stress on memory function according to single classification criterion, they have proved insufficient to explain the whole complexity of effects. Here, we review the literature in the field of stress and memory interactions according to five selected classifying factors (source of stress, stressor duration, stressor intensity, stressor timing with regard to memory phase, and learning type) in an attempt to develop an integrative model to understand how stress affects memory function. Summarizing on those conditions in which there was enough information, we conclude that high stress levels, whether intrinsic (triggered by the cognitive challenge) or extrinsic (induced by conditions completely unrelated to the cognitive task), tend to facilitate Pavlovian conditioning (in a linear-asymptotic manner), while being deleterious for spatial/explicit information processing (which with regard to intrinsic stress levels follows an inverted U-shape effect). Moreover, after reviewing the literature, we conclude that all selected factors are essential to develop an integrative model that defines the outcome of stress effects in memory processes. In parallel, we provide a brief review of the main neurobiological mechanisms proposed to account for the different effects of stress in memory function. Glucocorticoids were found as a common mediating mechanism for both the facilitating and impairing actions of stress in different memory processes and phases. Among the brain regions implicated, the hippocampus, amygdala, and prefrontal cortex were highlighted as critical for the mediation of stress effects.
The role of the amygdala in emotional memories: a multidisciplinary approach
This thesis investigates the role of the amygdala for the establishment of fear memories with a multidisciplinary approach, including behavioural, psychopharmacological, genetic, molecular, and electrophysiological techniques in rats or mice, under healthy or pathological conditions. This research program aims to shed light on the acquisition and storage of emotional memories in the amygdala and closely interconnected brain areas. In one line of experiments, the molecular mechanisms leading to the establishment of fear memory traces in the amygdala were investigated. For this purpose, the functional role of the polysialylated neural cell adhesion molecule PSA-NCAM, expressed in the synaptic junction, was assessed in the amygdala – and also prefrontal cortex and hippocampus – with psychopharmacological and genetic approaches and tasks that strongly rely on these brain areas. Two lines of studies were followed: 1) amygdala-targeted cleavage and enhancement of PSA-NCAM in rats and 2) g...
Memory consolidation and the amygdala: a systems perspective
Trends in neurosciences, 2002
The basolateral region of the amygdala (BLA) plays a crucial role in making significant experiences memorable. There is extensive evidence that stress hormones and other neuromodulatory systems activated by arousing training experiences converge in regulating noradrenaline-receptor activity within the BLA. Such activation of the BLA modulates memory consolidation via BLA projections to many brain regions involved in consolidating lasting memory, including the hippocampus, caudate nucleus, nucleus basalis and cortex. Investigation of the involvement of BLA projections to other brain regions is essential for understanding influences of the amygdala on different aspects and forms of memory.