Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models (original) (raw)

From the jungle to the garden : growing trees for Markov chain Monte Carlo inference in undirected graphical models

2005

In machine-learning, Markov Chain Monte Carlo (MCMC) strategies such as Gibbs sampling are important approximate inference techniques. They use a Markov Chain mechanism to explore and sample the state space of a target distribution. The generated samples are then used to approximate the target distribution. MCMC is mathematically guaranteed to converge with enough samples. Yet some complex graphical models can cause it to converge very slowly to the true distribution of interest. Improving the quality and efficiency of MCMC methods is an active topic of research in the probabilistic graphical models field. One possible method is to “block” some parts of the graph together, sampling groups of variables instead of single variables. In this thesis, we concentrate on a particular blocking scheme known as tree sampling. Tree sampling operates on groups of trees, and as such requires that the graph be partitioned in a special way prior to inference. We present new algorithms to find tree ...

ST ] 2 J un 2 01 8 BAYESIAN INFERENCE IN DECOMPOSABLE GRAPHICAL MODELS USING SEQUENTIAL MONTE CARLO METHODS

We present a sequential sampling methodology for weakly structural Markov laws, arising naturally in a Bayesian structure learning context for decomposable graphical models. As a key component of our suggested approach, we show that the problem of graph estimation, which in general lacks natural sequential interpretation, can be recast into a sequential setting by proposing a recursive Feynman-Kac model that generates a flow of junction tree distributions over a space of increasing dimensions. We focus on particle McMC methods to provide samples on this space, in particular on particle Gibbs (PG), as it allows for generating McMC chains with global moves on an underlying space of decomposable graphs. To further improve the PG mixing properties, we incorporate a systematic refreshment step implemented through direct sampling from a backward kernel. The theoretical properties of the algorithm are investigated, showing that the proposed refreshment step improves the performance in terms of asymptotic variance of the estimated distribution. The suggested sampling methodology is illustrated through a collection of numerical examples demonstrating high accuracy in Bayesian graph structure learning in both discrete and continuous graphical models.

Efficient sampling of Gaussian graphical models using conditional Bayes factors

Stat, 2014

Bayesian estimation of Gaussian graphical models has proven to be challenging because the conjugate prior distribution on the Gaussian precision matrix, the G-Wishart distribution, has a doubly intractable partition function. Recent developments provide a direct way to sample from the G-Wishart distribution, which allows for more efficient algorithms for model selection than previously possible. Still, estimating Gaussian graphical models with more than a handful of variables remains a nearly infeasible task. Here, we propose two novel algorithms that use the direct sampler to more efficiently approximate the posterior distribution of the Gaussian graphical model. The first algorithm uses conditional Bayes factors to compare models in a Metropolis-Hastings framework. The second algorithm is based on a continuous time Markov process. We show that both algorithms are substantially faster than state-of-theart alternatives. Finally, we show how the algorithms may be used to simultaneously estimate both structural and functional connectivity between subcortical brain regions using resting-state fMRI. * mhinne@cs.ru.nl

Bayesian structural learning and estimation in Gaussian graphical models

We propose a new stochastic search algorithm for Gaussian graphical models called the mode oriented stochastic search. Our algorithm relies on the existence of a method to accurately and efficiently approximate the marginal likelihood associated with a graphical model when it cannot be computed in closed form. To this end, we develop a new Laplace approximation method to the normalizing constant of a G-Wishart distribution. We show that combining the mode oriented stochastic search with our marginal likelihood estimation method leads to excellent results with respect to other techniques discussed in the literature. We also describe how to perform inference through Bayesian model averaging based on the reduced set of graphical models identified. Finally, we give a novel stochastic search technique for multivariate regression models.

Sequential Monte Carlo for Graphical Models

We propose a new framework for how to use sequential Monte Carlo (SMC) algorithms for inference in probabilistic graphical models (PGM). Via a sequential decomposition of the PGM we find a sequence of auxiliary distributions defined on a monotonically increasing sequence of probability spaces. By targeting these auxiliary distributions using SMC we are able to approximate the full joint distribution defined by the PGM. One of the key merits of the SMC sampler is that it provides an unbiased estimate of the partition function of the model. We also show how it can be used within a particle Markov chain Monte Carlo framework in order to construct high-dimensional block-sampling algorithms for general PGMs.

Learning undirected graphical models using persistent sequential Monte Carlo

Machine Learning, 2016

Along with the popular use of algorithms such as persistent contrastive divergence, tempered transition and parallel tempering, the past decade has witnessed a revival of learning undirected graphical models (UGMs) with sampling-based approximations. In this paper, based upon the analogy between Robbins-Monro's stochastic approximation procedure and sequential Monte Carlo (SMC), we analyze the strengths and limitations of state-of-the-art learning algorithms from an SMC point of view. Moreover, we apply the rationale further in sampling at each iteration, and propose to learn UGMs using persistent sequential Monte Carlo (PSMC). The whole learning procedure is based on the samples from a long, persistent sequence of distributions which are actively constructed. Compared to the abovementioned algorithms, one critical strength of PSMC-based learning is that it can explore the sampling space more effectively. In particular, it is robust when learning rates are large or model distributions are high-dimensional and thus multi-modal, which often causes other algorithms to deteriorate. We tested PSMC learning, comparing it with related methods, on carefully designed experiments with both synthetic and real-world data. Our empirical results demonstrate that PSMC compares favorably with the state of the art by consistently yielding the highest (or among the highest) likelihoods. We also evaluated PSMC on two practical

Bayesian Structure Learning in Sparse Gaussian Graphical Models

Decoding complex relationships among large numbers of variables with relatively few observations is one of the crucial issues in science. One approach to this problem is Gaussian graphical modeling, which describes conditional independence of variables through the presence or absence of edges in the underlying graph. In this paper, we introduce a novel and efficient Bayesian framework for Gaussian graphical model determination which is a trans-dimensional Markov Chain Monte Carlo (MCMC) approach based on a continuous-time birth-death process. We cover the theory and computational details of the method. It is easy to implement and computationally feasible for high-dimensional graphs. We show our method outperforms alternative Bayesian approaches in terms of convergence, mixing in the graph space and computing time. Unlike frequentist approaches, it gives a principled and, in practice, sensible approach for structure learning. We illustrate the efficiency of the method on a broad range of simulated data. We then apply the method on large-scale real applications from human and mammary gland gene expression studies to show its empirical usefulness. In addition, we implemented the method in the R package BDgraph which is freely available at http://CRAN.R-project.org/package=BDgraph.

Bayesian Graphical Regression

We consider the problem of modeling conditional independence structures in heterogeneous data in the presence of additional subject-level covariates -termed Graphical Regression. We propose a novel specification of a conditional (in)dependence function of covariates -which allows the structure of a directed graph to vary flexibly with the covariates; imposes sparsity in both edge and covariate selection; produces both subject-specific and predictive graphs; and is computationally tractable. We provide theoretical justifications of our modeling endeavor, in terms of graphical model selection consistency. We demonstrate the performance of our method through rigorous simulation studies. We illustrate our approach in a cancer genomics-based precision medicine paradigm, where-in we explore gene regulatory networks in multiple myeloma taking prognostic clinical factors into account to obtain both populationlevel and subject-level gene regulatory networks.

Marginal conditional independence models with application to graphical modeling

2009

Conditional independence models are deflned by a set of conditional in- dependence restrictions and play an important role in many statistical applications, especially, but not only, graphical modeling. In this paper we identify a subclass of these models which are hierarchical marginal log-linear, as deflned by Bergsma and Rudas (2002a). Such models are smooth, which implies the applicability of standard asymptotic theory and simplifles interpretation. Furthermore, we give a marginal log- linear parameterization and a minimal speciflcation of the models in the subclass, which implies the applicability of standard methods to compute maximum likelihood estimates and simplifles the calculation of the degrees of freedom for the model. We illustrate the utility of our results by applying them to certain block recursive Markov models associated with chain graphs.