Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment (original) (raw)
Related papers
Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes
Frontiers in Physiology
Olfaction is an essential sensory modality for insects and their olfactory environment is mostly made up of plant-emitted volatiles. The terrestrial vegetation produces an amazing diversity of volatile compounds, which are then transported, mixed, and degraded in the atmosphere. Each insect species expresses a set of olfactory receptors that bind part of the volatile compounds present in its habitat. Insect odorscapes are thus defined as species-specific olfactory spaces, dependent on the local habitat, and dynamic in time. Manipulations of pest-insect odorscapes are a promising approach to answer the strong demand for pesticidefree plant-protection strategies. Moreover, understanding their olfactory environment becomes a major concern in the context of global change and environmental stresses to insect populations. A considerable amount of information is available on the identity of volatiles mediating biotic interactions that involve insects. However, in the large body of research devoted to understanding how insects use olfaction to locate resources, an integrative vision of the olfactory environment has rarely been reached. This article aims to better apprehend the nature of the insect odorscape and its importance to insect behavioral ecology by reviewing the literature specific to different disciplines from plant ecophysiology to insect neuroethology. First, we discuss the determinants of odorscape composition, from the production of volatiles by plants (section "Plant Metabolism and Volatile Emissions") to their filtering during detection by the olfactory system of insects (section "Insect Olfaction: How Volatile Plant Compounds Are Encoded and Integrated by the Olfactory System"). We then summarize the physical and chemical processes by which volatile chemicals distribute in space (section "Transportation of Volatile Plant Compounds and Spatial Aspects of the Odorscape") and time (section "Temporal Aspects: The Dynamics of the Odorscape") in the atmosphere. The following sections consider the ecological importance of background odors in odorscapes and how insects adapt to their olfactory environment. Habitat provides an odor background and a sensory context that modulate the responses of insects to pheromones and other olfactory signals (section "Ecological Importance of Odorscapes"). In addition, insects do not respond inflexibly to single elements in their odorscape but integrate several components of their environment (section "Plasticity and Adaptation to Complex and Variable Odorscapes"). We finally discuss existing methods of odorscape manipulation for sustainable pest insect control and potential future developments in the context of agroecology (section "Odorscapes in Plant Protection and Agroecology").
The insect ovipositor as a volatile sensor within a closed microcosm
We show that the insect ovipositor is an olfactory organ that responds to volatiles and CO 2 in gaseous form. We demonstrate this phenomenon in parasitic wasps associated with Ficus racemosa where ovipositors, as slender as a human hair, drill through the syconium (enclosed inflorescences) and act as a guiding probe to locate highly specific egg-laying sites hidden inside. We hypothesize that olfaction will occur in the ovipositors of insects such as parasitic fig wasps where the hosts are concealed and volatile concentrations can build up locally. Relevant stimuli such as herbivore-induced fig volatiles and CO 2 elicited electrophysiological responses from the ovipositors. Silver nitrate staining also revealed pores in ovipositor sensilla, indicating their olfactory nature. Insects could use volatile sensors on their ovipositors to evaluate ecologically relevant stimuli for oviposition. Further investigations on the sensory nature of ovipositors can provide designs for development of ovipositor-inspired micro-chemosensors.
2004
This thesis is a study of the odour responses of insect olfactory (or odorant) receptor neurons (ORN) of blowfly (Calliphora vicina), mosquito (Aedes communis), fruitflies (Drosophila melanogaster and D. virilis) and large pine weevil (Hylobius abietis). A power-law dependence (similar to Stevens' law in psychophysics) was obtained for the action potential rate of ORN responses vs. odour concentration in measurements with metal microelectrodes from blowfly ORNs and an analysis system was developed for the extracellularily recorded action potentials (or nerve pulses).
Chemical communication: does odor plume shape matter?
Many insects use chemical information to gather information about their environment. Infochemicals are spread into the environment as the wind disperses the odor molecules from the source. The structure of an odor plume around a food source is complex and time-dependent. At a large scale, it meanders as it moves with the wind. At a smaller scale, patches with odors are interspersed with regions of clean air. In this study, we compare a plume model that takes the features of a real odor plume into account, a so-called filamentous plume model, with a simplified, time-averaged model, which is commonly used in the literature, and we investigate by simulation their effect on a modeled fruit fly population. During foraging Drosophila melanogaster is attracted to food odors and its aggregation pheromone. Ample knowledge on the attraction to these infochemicals in an experimental setup exist in the literature. The comparison of the plumes in a simulation study clearly showed that the filamentous plume attracted more fruit flies towards the source than the time-averaged plume. We discuss the results in the light of experimental findings.
Using insect sniffing devices for detection
Trends in Biotechnology, 2008
Emerging information about the ability of insects to detect and associatively learn has revealed that they could be used within chemical detection systems. Such systems have been developed around free-moving insects, such as honey bees. Alternatively, behavioral changes of contained insects can be interpreted by sampling air pumped over their olfactory organs. These organisms are highly sensitive, flexible, portable and cheap to reproduce, and it is easy to condition them to detect target odorants. However, insect-sensing systems are not widely studied or accepted as proven biological sensors. Further studies are needed to examine additional insect species and to develop better methods of using their olfactory system for detecting odorants of interest.
History dependence in insect flight decisions during odor tracking
PLoS computational biology, 2018
Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with hig...
Odor identity influences tracking of temporally patterned plumes in Drosophila
BMC Neuroscience, 2011
Background: Turbulent fluid landscapes impose temporal patterning upon chemical signals, and the dynamical neuronal responses to patterned input vary across the olfactory receptor repertoire in flies, moths, and locusts. Sensory transformations exhibit low pass filtering that ultimately results in perceptual fusion of temporally transient sensory signals. For example, humans perceive a sufficiently fast flickering light as continuous, but the frequency threshold at which this fusion occurs varies with wavelength. Although the summed frequency sensitivity of the fly antenna has been examined to a considerable extent, it is unknown how intermittent odor signals are integrated to influence plume tracking behavior independent of wind cues, and whether temporal fusion for behavioral tracking might vary according to the odor encountered.
Selectivity of odorant receptors in insects
Frontiers in Cellular Neuroscience, 2012
Insect olfactory receptors (ORs) detect chemicals, shape neuronal physiology, and regulate behavior. Although ORs have been categorized as "generalists" and "specialists" based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs specifically recognize non-pheromonal compounds, and that our understanding of odorant-selectivity mirrors our knowledge of insect chemical ecology. As we are progressively becoming aware that ORs are activated through a variety of mechanisms, the molecular basis of odorant-selectivity and the corollary notion of broad-tuning need to be re-examined from a pharmacological and evolutionary perspective.
The narrowing olfactory landscape of insect odorant receptors
Frontiers in Ecology and Evolution, 2015
The molecular basis of odorant detection and its corollary, the task of the odorant receptor, are fundamental to understanding olfactory coding and sensory ecology. Based on their molecular receptive range, olfactory receptors have been classified as pheromone and non-pheromone receptors, which are respectively activated by a single pheromone component ("specialist") or by multiple odorant ligands ("generalist"). This functional distinction is unique among ligand-gated ion channels and has shaped how we model olfactory coding both at the peripheral and central levels. Here, we revisit the long-standing combinatorial theory of olfaction and argue, based on physiological, pharmacological, evolutionary, and experimental grounds that the task of the odorant receptor is not different from that of neurotransmitter receptors localized in neuronal synapses.