Physico-chemical Properties of Mill Scale Iron Powders (original) (raw)

Abstract

Powdered form of iron typically < 250 microns is phrased as iron powder. Commercial manufacturing of iron powder is majorly restricted to atomization, carbonyl, electrolytic and reduction routes. Powders from the later three techniques generally cater to special iron powders applicable to non-powder metallurgy segments such as food fortification, chemical reagents, water purification, etc. In this work, mill scale iron powders are synthesized by thermo-chemical reduction of mill scale, a steel industry by product, and their properties are analysed and compared with commercial iron powders such as carbonyl, electrolytic and reduced. Chemical and physical characterizations such as Optical Microscopy, Scanning Electron Microscopy and X-ray Diffraction of the powders are performed. Obtained results reveal that, mill scale iron powders MIP and MIP45 possess good product properties. Especially, MIP45 grade exhibited finer particle size of D 50 < 30 microns and BET surface area of 0.63 m 2 /g along with Fe (T) > 98%, true density-7.55 g/cc, apparent density 2.67-2.83 g/cc, packed bulk density of 3.44 g/cc and good flowability. This product of mill scale with highest apparent density and good surface area is expected to qualify to new segment of applications along with other commercial iron powders.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (32)

  1. P. C. Angelo and R. Subramanian: Powder Metallurgy Science, Technology and Applications, PHI Learning, Delhi, (2008), 20.
  2. K. S. Sista and S. Dwarapudi: ISIJ Int., 58 (2018), No. 6, 999. http:// dx.doi.org/10.2355/isijinternational.ISIJINT-2017-722
  3. R. M. German: Powder Metallurgy of Iron and Steel, Wiley- Interscience, Hoboken, NJ, (1998), 86.
  4. A. R. Poster: Iron Powder Metallurgy, Perspectives in Powder Metal- lurgy, Vol. 3, Springer, Boston, MA, (1968), 20.
  5. A. Ghosh and A. K. Ghosh: Sustainable Waste Management: Policies and Case Studies, ed. by S. K. Ghosh, Springer, New York, (2020), 299.
  6. H. Wu, K. Lv, L. Liang and H. Hu: Omega, 66 (2017), 38. https:// doi.org/10.1016/j.omega.2016.01.009
  7. S. Sarkar and D. Mazumder: Int. J. Soc. Behav. Educ. Econ. Bus. Ind. Eng., 9 (2015), 984.
  8. M. Smol: J. Steel Struct. Constr., 1 (2015), 1000102. https://doi. org/10.4172/2472-0437.1000102
  9. B. Chen, J. Yang and Z. Ouyang: J. Iron Steel Res. Int., 18 (2011), 33. https://doi.org/10.1016/S1006-706X(11)60087-3
  10. B. Das, S. Prakash, P. S. R. Reddy and V. N. Misra: Resour. Conserv. Recycl., 50 (2007), 40. https://doi.org/10.1016/j.rescon- rec.2006.05.008
  11. K. S. Sista, S. Dwarapudi and V. P. Nerune: ISIJ Int., 59 (2019), No. 5, 787. https://doi.org/10.2355/isijinternational.ISIJINT-2018-628
  12. N. A. El-Hussiny, H. H. Abdul-Waheb, M. M. Ali, A. A. Omar, M. E. H. Shalabi and M. R. Moharm: Open Access Libr. J., 1 (2014), 1. http://dx.doi.org/10.4236/oalib.1101016
  13. N. M. Gaballah, A. F. Zikry, M. G. Khalifa, A. B. Farag, N. A. El- Hussiny and M. E. H. Shalabi: Open J. Inorg. Non-Met. Mater., 3 (2013), 23. http://dx.doi.org/10.4236/ojinm.2013.33005
  14. C. Joshi and N. B. Dhokey: Trans. Indian Inst. Met., 68 (2015), 31. http://dx.doi.org/10.1007/s12666-014-0425-4
  15. M. Eissa, A. Ahmed and M. El-Fawkhry: J. Metall., 2015 (2015), 926028. http://dx.doi.org/10.1155/2015/926028
  16. R. Sen, S. Dehiya, U. Pandel and M. K. Banerjee: Procedia Earth Planet. Sci., 11 (2015), 8. https://doi.org/10.1016/j.proeps.2015.06.003
  17. C. Guan, J. Li, N. Tan, Y. He and S. Zhang: Int. J. Hydrogen Energy, 39 (2014), 15116. http://dx.doi.org/10.1016/j.ijhydene.2014.07.024
  18. S. Mechachti, O. Benchiheub, S. Serrai and M. E. H. Shalabi: Int. J. Sci. Eng. Res., 4 (2013), No. 5, 1467.
  19. M. I. Martín, F. A. López and J. M. Torralba: Ironmaking Steelmaking, 39 (2012), 155. https://doi.org/10.1179/1743281211Y.0000000078
  20. N. A. El-Hussiny and M. E. H. Shalabi: Powder Technol., 205 (2011), 217. https://doi.org/10.1016/j.powtec.2010.09.017
  21. M. C. Bagatini, V. Zymla, E. Osório and A. C. F. Vilela: ISIJ Int., 51 (2011), 1072. https://doi.org/10.2355/isijinternational.51.1072
  22. N. A. El-Hussiny, F. M. Mohamed and M. E. H. Shalabi: Sci. Sinter., 43 (2011), 21. https://doi.org/10.2298/SOS1101021E
  23. O. Benchiheub, S. Mechachti, S. Serrai and M. G. Khalifa: J. Mater. Environ. Sci., 1 (2010), 267.
  24. R. Farahat, M. Eissa, G. Megahed and A. Baraka: Steel Grips J. Steel Relat. Mater., 8 (2010), 88.
  25. J. Shi, D. R. Wang, Y. D. He, H. B. Qi and G. Wei: Mater. Lett., 62 (2008), 3500. https://doi.org/10.1016/j.matlet.2008.03.004
  26. S. Cho and J. Lee: Met. Mater. Int., 14 (2008), 193. https://doi. org/10.3365/met.mat.2008.04.193
  27. H. Y. Saw, C. E. Davies, A. H. J. Paterson and J. R. Jones: Chemeca 2013, Engineers Australia, Barton ACT, (2013), 299.
  28. M. G. Pavlović, Lj. J. Pavlović, E. R. Ivanović, V. Radmilović and K. I. Popov: J. Serb. Chem. Soc., 66 (2001), No. 11-12, 923. https:// doi.org/10.2298/JSC0112923P
  29. C. Polakowski, A. Sochan, A. Bieganowski, M. Ryżak, R. Földényi and J. Tóth: Int. Agrophys., 28 (2014), 195. https://doi.org/10.2478/ intag-2014-0008
  30. E. C. Abdullah and D. Geldart: Powder Technol., 102 (1999), 151. https://doi.org/10.1016/S0032-5910(98)00208-3
  31. A. B. Spierings, M. Voegtlin, T. Bauer and K. Wegener: Prog. Addit. Manuf., 1 (2016), 9. https://doi.org/10.1007/s40964-015-0001-4
  32. Website of BSAF, Carbonyl Iron Powder, https://www.dispersions- pigments.basf.com/portal/load/fid827906/CIP_General_PO_e.pdf, (accessed 2019-09-14).