Physico-chemical Properties of Mill Scale Iron Powders (original) (raw)
Abstract
Powdered form of iron typically < 250 microns is phrased as iron powder. Commercial manufacturing of iron powder is majorly restricted to atomization, carbonyl, electrolytic and reduction routes. Powders from the later three techniques generally cater to special iron powders applicable to non-powder metallurgy segments such as food fortification, chemical reagents, water purification, etc. In this work, mill scale iron powders are synthesized by thermo-chemical reduction of mill scale, a steel industry by product, and their properties are analysed and compared with commercial iron powders such as carbonyl, electrolytic and reduced. Chemical and physical characterizations such as Optical Microscopy, Scanning Electron Microscopy and X-ray Diffraction of the powders are performed. Obtained results reveal that, mill scale iron powders MIP and MIP45 possess good product properties. Especially, MIP45 grade exhibited finer particle size of D 50 < 30 microns and BET surface area of 0.63 m 2 /g along with Fe (T) > 98%, true density-7.55 g/cc, apparent density 2.67-2.83 g/cc, packed bulk density of 3.44 g/cc and good flowability. This product of mill scale with highest apparent density and good surface area is expected to qualify to new segment of applications along with other commercial iron powders.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (32)
- P. C. Angelo and R. Subramanian: Powder Metallurgy Science, Technology and Applications, PHI Learning, Delhi, (2008), 20.
- K. S. Sista and S. Dwarapudi: ISIJ Int., 58 (2018), No. 6, 999. http:// dx.doi.org/10.2355/isijinternational.ISIJINT-2017-722
- R. M. German: Powder Metallurgy of Iron and Steel, Wiley- Interscience, Hoboken, NJ, (1998), 86.
- A. R. Poster: Iron Powder Metallurgy, Perspectives in Powder Metal- lurgy, Vol. 3, Springer, Boston, MA, (1968), 20.
- A. Ghosh and A. K. Ghosh: Sustainable Waste Management: Policies and Case Studies, ed. by S. K. Ghosh, Springer, New York, (2020), 299.
- H. Wu, K. Lv, L. Liang and H. Hu: Omega, 66 (2017), 38. https:// doi.org/10.1016/j.omega.2016.01.009
- S. Sarkar and D. Mazumder: Int. J. Soc. Behav. Educ. Econ. Bus. Ind. Eng., 9 (2015), 984.
- M. Smol: J. Steel Struct. Constr., 1 (2015), 1000102. https://doi. org/10.4172/2472-0437.1000102
- B. Chen, J. Yang and Z. Ouyang: J. Iron Steel Res. Int., 18 (2011), 33. https://doi.org/10.1016/S1006-706X(11)60087-3
- B. Das, S. Prakash, P. S. R. Reddy and V. N. Misra: Resour. Conserv. Recycl., 50 (2007), 40. https://doi.org/10.1016/j.rescon- rec.2006.05.008
- K. S. Sista, S. Dwarapudi and V. P. Nerune: ISIJ Int., 59 (2019), No. 5, 787. https://doi.org/10.2355/isijinternational.ISIJINT-2018-628
- N. A. El-Hussiny, H. H. Abdul-Waheb, M. M. Ali, A. A. Omar, M. E. H. Shalabi and M. R. Moharm: Open Access Libr. J., 1 (2014), 1. http://dx.doi.org/10.4236/oalib.1101016
- N. M. Gaballah, A. F. Zikry, M. G. Khalifa, A. B. Farag, N. A. El- Hussiny and M. E. H. Shalabi: Open J. Inorg. Non-Met. Mater., 3 (2013), 23. http://dx.doi.org/10.4236/ojinm.2013.33005
- C. Joshi and N. B. Dhokey: Trans. Indian Inst. Met., 68 (2015), 31. http://dx.doi.org/10.1007/s12666-014-0425-4
- M. Eissa, A. Ahmed and M. El-Fawkhry: J. Metall., 2015 (2015), 926028. http://dx.doi.org/10.1155/2015/926028
- R. Sen, S. Dehiya, U. Pandel and M. K. Banerjee: Procedia Earth Planet. Sci., 11 (2015), 8. https://doi.org/10.1016/j.proeps.2015.06.003
- C. Guan, J. Li, N. Tan, Y. He and S. Zhang: Int. J. Hydrogen Energy, 39 (2014), 15116. http://dx.doi.org/10.1016/j.ijhydene.2014.07.024
- S. Mechachti, O. Benchiheub, S. Serrai and M. E. H. Shalabi: Int. J. Sci. Eng. Res., 4 (2013), No. 5, 1467.
- M. I. Martín, F. A. López and J. M. Torralba: Ironmaking Steelmaking, 39 (2012), 155. https://doi.org/10.1179/1743281211Y.0000000078
- N. A. El-Hussiny and M. E. H. Shalabi: Powder Technol., 205 (2011), 217. https://doi.org/10.1016/j.powtec.2010.09.017
- M. C. Bagatini, V. Zymla, E. Osório and A. C. F. Vilela: ISIJ Int., 51 (2011), 1072. https://doi.org/10.2355/isijinternational.51.1072
- N. A. El-Hussiny, F. M. Mohamed and M. E. H. Shalabi: Sci. Sinter., 43 (2011), 21. https://doi.org/10.2298/SOS1101021E
- O. Benchiheub, S. Mechachti, S. Serrai and M. G. Khalifa: J. Mater. Environ. Sci., 1 (2010), 267.
- R. Farahat, M. Eissa, G. Megahed and A. Baraka: Steel Grips J. Steel Relat. Mater., 8 (2010), 88.
- J. Shi, D. R. Wang, Y. D. He, H. B. Qi and G. Wei: Mater. Lett., 62 (2008), 3500. https://doi.org/10.1016/j.matlet.2008.03.004
- S. Cho and J. Lee: Met. Mater. Int., 14 (2008), 193. https://doi. org/10.3365/met.mat.2008.04.193
- H. Y. Saw, C. E. Davies, A. H. J. Paterson and J. R. Jones: Chemeca 2013, Engineers Australia, Barton ACT, (2013), 299.
- M. G. Pavlović, Lj. J. Pavlović, E. R. Ivanović, V. Radmilović and K. I. Popov: J. Serb. Chem. Soc., 66 (2001), No. 11-12, 923. https:// doi.org/10.2298/JSC0112923P
- C. Polakowski, A. Sochan, A. Bieganowski, M. Ryżak, R. Földényi and J. Tóth: Int. Agrophys., 28 (2014), 195. https://doi.org/10.2478/ intag-2014-0008
- E. C. Abdullah and D. Geldart: Powder Technol., 102 (1999), 151. https://doi.org/10.1016/S0032-5910(98)00208-3
- A. B. Spierings, M. Voegtlin, T. Bauer and K. Wegener: Prog. Addit. Manuf., 1 (2016), 9. https://doi.org/10.1007/s40964-015-0001-4
- Website of BSAF, Carbonyl Iron Powder, https://www.dispersions- pigments.basf.com/portal/load/fid827906/CIP_General_PO_e.pdf, (accessed 2019-09-14).