Emergence of Population Growth Models: Fast Migration and Slow Growth (original) (raw)
Related papers
From Logistic Growth to Exponential Growth in a Population Dynamical Model
2019
Dynamics among central sources (hubs) providing a resource and large number of components enjoying and contributing to this resource describes many real life situations. Modeling, controlling, and balancing this dynamics is a general problem that arises in many scientific disciplines. We analyze a stochastic dynamical system exhibiting this dynamics with a multiplicative noise. We show that this model can be solved exactly by passing to variables that describe the mass ratio between the components and the hub. We derive a deterministic equation for the average mass ratio. This equation describes logistic growth. We derive the full phase diagram of the model and identify three regimes by calculating the sample and moment Lyapunov exponent of the system. The first regime describes full balance between the non-hub components and the hub, in the second regime the entire resource is concentrated mainly in the hub, and in the third regime the resource is localized on a few non-hub compone...
Fast Migration and Emergent Population Dynamics
Physical Review Letters, 2012
We consider population dynamics on a network of patches, each of which has a the same local dynamics, with different population scales (carrying capacities). It is reasonable to assume that if the patches are coupled by very fast migration the whole system will look like an individual patch with a large effective carrying capacity. This is called a "well-mixed" system. We show that, in general, it is not true that the well-mixed system has the same dynamics as each local patch. Different global dynamics can emerge from coupling, and usually must be figured out for each individual case. We give a general condition which must be satisfied for well-mixed systems to have the same dynamics as the constituent patches.
A discrete model with density dependent fast migration
Mathematical Biosciences, 1999
The aim of this work is to develop an approximate aggregation method for certain non-linear discrete models. Approximate aggregation consists in describing the dynamics of a general system involving many coupled variables by means of the dynamics of a reduced system with a few global variables. We present discrete models with two different time scales, the slow one considered to be linear and the fast one non-linear because of its transition matrix depends on the global variables. In our discrete model the time unit is chosen to be the one associated to the slow dynamics, and then we approximate the effect of fast dynamics by using a sufficiently large power of its corresponding transition matrix. In a previous work the same system is treated in the case of fast dynamics considered to be linear, conservative in the global variables and inducing a stable frequency distribution of the state variables. A similar non-linear model has also been studied which uses as time unit the one associated to the fast dynamics and has the non-linearity in the slow part of the system. In the present work we transform the system to make the global variables explicit, and we justify the quick derivation of the aggregated system. The local asymptotic behaviour of the aggregated system entails that of the general system under certain conditions, for instance, if the aggregated system has a stable hyperbolic fixed point then the general system has one too. The method is applied to aggregate a multiregional Leslie model with density dependent migration rates.
Aggregation methods in population dynamics discrete models
Mathematical and Computer Modelling, 1998
Aggregation methods try to approximate a large scale dynamical system, the general system, involving many coupled variables by a reduced system, the aggregated system, that describes the dynamics of a few global variables. Approximate aggregation can be performed when different time scales are involved in the dynamics of the general system. Aggregation methods have been developed for general continuous time systems, systems of ordinary differential equations, and for linear discrete time models, with applications in population dynamics. In this contribution, we present aggregation methods for linear and nonlinear discrete time models. We present discrete time models with two different time scales, the fast one considered linear and the slow one, generally, nonlinear. We transform the system to make the global variables appear, and use a version of center manifold theory to build up the aggregated system in the nonlinear case. Simple forms of the aggregated system are enough for the local study of the asymptotic behaviour of the general system, provided that it has certain stability under perturbations. In linear models, the asymptotic behaviours of the general and the aggregated systems are characterized by their dominant eigenelements, that are proved to coincide to a certain order. The general method is applied to aggregate a multiregional Leslie model in the constant rates case (linear) and also in the density dependent case (nonlinear).
Aggregation of Variables and Applications to Population Dynamics
Ecological modelers produce models with more and more details, leading to dynamical systems involving lots of variables. This chapter presents a set of methods which aim to extract from these complex models some submodels containing the same information but which are more tractable from the mathematical point of view. This “aggregation” of variables is based on time scales separation methods. The first part of the chapter is devoted to the presentation of mathematical aggregation methods for ODE’s, discrete models, PDE’s and DDE’s. The second part presents several applications in population and community dynamics.
Aggregation methods in dynamical systems and applications in population and community dynamics
Physics of Life Reviews, 2008
Approximate aggregation techniques allow one to transform a complex system involving many coupled variables into a simpler reduced model with a lesser number of global variables in such a way that the dynamics of the former can be approximated by that of the latter. In ecology, as a paradigmatic example, we are faced with modelling complex systems involving many variables corresponding to various interacting organization levels. This review is devoted to approximate aggregation methods that are based on the existence of different time scales, which is the case in many real systems as ecological ones where the different organization levels (individual, population, community and ecosystem) possess a different characteristic time scale. Two main goals of variables aggregation are dealt with in this work. The first one is to reduce the dimension of the mathematical model to be handled analytically and the second one is to understand how different organization levels interact and which properties of a given level emerge at other levels. The review is organized in three sections devoted to aggregation methods associated to different mathematical formalisms: ordinary differential equations, infinite-dimensional evolution equations and difference equations.
Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie, 2000
The aim of this work is to study the effects of different individual behaviours on the overall growth of a spatially distributed population. The population can grow on two spatial patches, a source and a sink, that are connected by migrations. Two time scales are involved in the dynamics, a fast one corresponding to migrations and a slow one associated with the local growth on each patch. Different scenarios of densitydependent migration are proposed and their effects on the population growth are investigated. A general discussion on the use of aggregation methods for the study of integration of different ecological levels is proposed. © 2000 Académie des sciences/ Éditions scientifiques et médicales Elsevier SAS
Stochastic dynamics and logistic population growth
Physical Review E, 2015
The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the "momentum-space" spectral theory or the "real-space" Wentzel-Kramers-Brillouin (WKB) approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.
A model of physiologically structured population dynamics with a nonlinear individual growth rate
Journal of Mathematical Biology, 1995
In this article we consider a size structured population model with a nonlinear growth rate depending on the individual's size and on the total population. Our purpose is to take into account the competition for a resource (as it can be light or nutrients in a forest) in the growth of the individuals and study the influence of this nonlinear growth in the population dynamics. We study the existence and uniqueness of solutions for the model equations, and also prove the existence of a (compact) global attractor for the trajectories of the dynamical system defined by the solutions of the model. Finally, we obtain sufficient conditions for the convergence to a stationary size distribution when the total population tends to a constant value, and consider some simple examples that allow us to know something about their global dynamics.
An attempt to unify some population growth models from first principles
Revista Brasileira de Ensino de Física, 2017
In this work, some phenomenological growth models based only on the population information (macroscopic level) are deduced in an intuitive way. These models, for instance Verhulst, Gompertz and Bertalanffy-Richards models, are introduced in such a way that all the parameters involved have a physical interpretation. A model based on the interaction (distance dependent) between the individuals (microscopic level) is also presented. This microscopic model have some phenomenological models as particular cases. In this approach, the Verhulst model represents the situation in which all the individuals interact in the same way, regardless of the distance between them (mean field approach). Other phenomenological models are retrieved from the microscopic model according to two quantities: i) the way that the interaction decays as a function the distance between two individuals and ii) the dimension of the spatial structure formed by the individuals of the population. This microscopic model ...