Environmental control of plants using intelligent control systems (original) (raw)
Environmental control for commercial plant production affects the productivity and the quality of the crop. The efficiency of plant production in greenhouses depends significantly on the adjustment of several components particularly, the greenhouse interior temperature, relative humidity and Co2 concentration. In warm climates, the greenhouse air temperature and relative humidity are controlled by means of a simultaneous ventilation and humidification. Humidification usually requires some sort of evaporative devices such as misters, fog units or sprinklers, all of which cool and add water vapour to the greenhouse air. Dehumidifiers are very expensive, thereby in warm countries the only available solution for dehumidification is ventilation. Ventilation is required during most of the day to exchange the moist air with drier outside air. Moreover, it is very important in all greenhouses even if they are not controlled since it decreases the so-called “Greenhouse effect” which is mainly due to the confining of the air in the greenhouse enclosure and less to the radiative properties of the cover. Conventional controllers (e.g. Pseudo-Derivative Feedback Controller) are employed to maintain, at any time, optimal temperature and relative humidity inside the greenhouse, and to overcome the load effect of the outdoor undesirable climatic conditions. Since greenhouses are continually exposed to changing conditions, e.g. the outside climate and the thermal effect of the growing plant inside it, the greenhouse moves between different operating points within the whole growing season. That leads to a complex control problem requiring effective intelligent controllers. In practice, conventional controllers were used to control the system however their parameters are empirically adjusted. Besides, the operation of these controllers relies on the measurements provided by sensors located inside and near the greenhouse. If the information provided by one or several of these sensors is erroneous, the controllers will not operate properly. Similarly, failure of one or several of the actuators to function properly will impair the greenhouse operation. Therefore, an automatic diagnosis system of failures in greenhouses is proposed. The diagnosis system is based on deviations observed between measurements performed in the system and the predictions of a model of the failure-free system. This comparison is done through a bank of fuzzy observers, where each observer becomes active to a specific failure signature and inactive to the other failures. Neural networks are used to develop a model for the failure-free greenhouse. The main objective of this thesis is to explore and develop intelligent control schemes for adjusting the climate inside a greenhouse. The thesis employs the conventional Pseudo- Derivative Feedback (PDF) Controller. It develops the fuzzy PDF controller (FPDF). The thesis also, develops two genetic algorithm (GA) based climatic control schemes, one is genetic PDF (GPDF) and the other is genetic FPDF (GFPDF). The former uses GA to adjust the gains of the Pseudo-Derivative Feedback Controller (GPDF) and the later uses genetic algorithm to optimize the FPDF controller parameters (i.e., scale factors and/or parameters of the membership functions). Finally, the thesis develops a fuzzy neural fault detection and isolation system (FNFDIS), in which a bank of fuzzy observers are designed to detect faults that may occur in the greenhouse end items (e.g.., sensors and actuators). Simulation experiments are performed to test the soundness and capabilities of the developed control schemes for controlling the greenhouse climate. The proposed schemes are tested through two experiments, setpoint tracking test and regulatory control test. Also, the proposed diagnostic system was tested through four experiments. Compared with the results obtained using the conventional controllers, best results have been achieved using the proposed control schemes.