Evaluation of Electromagnetic Tracking for Stereoscopic Augmented Reality Laparoscopic Visualization (original) (raw)

3D Ultrasound System Using a Magneto-optic Hybrid Tracker for Augmented Reality Visualization in Laparoscopic Liver Surgery

Lecture Notes in Computer Science, 2002

A three-dimensional ultrasound (3D-US) system suitable for laparoscopic surgery that uses a novel magneto-optic hybrid tracker configuration. Our aim is to integrate 3D-US into a laparoscopic AR system. A 5D miniature magnetic tracker is combined with a 6D optical tracker outside the body to perform 6D tracking of a flexible US probe tip in the abdominal cavity. 6D tracking parameters at the tip are obtained by combining the 5D parameters at the tip inside the body, the 6D parameters at the US probe handle outside the body, and the restriction of the tip motion relative to the handle. The system was evaluated in comparison with a conventional 3D ultrasound system. Although the accuracy of the proposed system was somewhat inferior to that of the conventional one, both the accuracy and sweet spot area were found to be acceptable for clinical use.

Augmented Reality Haptic (ARH): An approach of electromagnetic tracking in Minimally Invasive Surgery

Purpose Minimally Invasive Surgery (MIS) is a widely used surgical technique that requires a long training process due to its difficulty and complexity. We developed an Augmented Reality Haptic (ARH) System based on electromagnetic tracking devices for use in creation training models (computer-enhanced trainers), in computer-assisted surgery or telemanipulation applications. Method The ARH system consists currently in a Linux driver and a calibration protocol to acquire the tooltip position of conventional laparoscopic tools in real time. A Polhemus Isotrack II was used to track surgical endoscopic tooltip movements. The receiver was mounted on the tool handle in order to measure laparoscopic tools positions without complex modifications. Two validation tests were done to guarantee the proper functioning of the ARH system in a MIS environment. The first one checks the driver operation and the second measures the accuracy and reliability of the tooltip pose estimation process. Results Jitter and orientation errors for the first test were 2.00 ± 0.10 and 2.00 ± 0.09 mm, respectively. Relative position error of 0.25 ± 0.06 cm for a distance of 5 cm was found. Jitter error for the second test was 127 ± 60, 117 ± 40 and 122 ± 39 mm in Z, Y and X rotations, respectively. Conclusions Results obtained with the ARH system are sufficiently accurate for use in MIS training. A supplementary correction procedure would be necessary to use this ARH system in computer-assisted surgery or telemanipulation.

A System to Support Laparoscopic Surgery by Augmented Reality Visualization

Lecture Notes in Computer Science, 2001

This paper describes the development of an augmented reality system for intra-operative laparoscopic surgery support. The goal of this system is to reveal structures, otherwise hidden within the laparoscope view. To allow flexible movement of the laparoscope we use optical tracking to track both patient and laparoscope. The necessary calibration and registration procedures were developed and bundled where possible in order to facilitate integration in a current laparoscopic procedure. Care was taken to achieve high accuracy by including radial distortion components without compromising real time speed. Finally a visual error assessment is performed, the usefulness is demonstrated within a test setup and some preliminary quantitative evaluation is done.

Design and validation of an augmented reality system for laparoscopic surgery in a real environment

2013

Purpose. This work presents the protocol carried out in the development and validation of an augmented reality system which was installed in an operating theatre to help surgeons with trocar placement during laparoscopic surgery. The purpose of this validation is to demonstrate the improvements that this system can provide to the field of medicine, particularly surgery. Method. Two experiments that were noninvasive for both the patient and the surgeon were designed. In one of these experiments the augmented reality system was used, the other one was the control experiment, and the system was not used. The type of operation selected for all cases was a cholecystectomy due to the low degree of complexity and complications before, during, and after the surgery. The technique used in the placement of trocars was the French technique, but the results can be extrapolated to any other technique and operation. Results and Conclusion. Four clinicians and ninety-six measurements obtained of twenty-four patients (randomly assigned in each experiment) were involved in these experiments. The final results show an improvement in accuracy and variability of 33% and 63%, respectively, in comparison to traditional methods, demonstrating that the use of an augmented reality system offers advantages for trocar placement in laparoscopic surgery.

Augmented reality visualization for laparoscopic surgery

1998

We present the design and a prototype implementation of a three-dimensional visualization system to assist with laparoscopic surgical procedures. The system uses 3D visualization, depth extraction from laparoscopic images, and six degree-of-freedom head and laparoscope tracking to display a merged real and synthetic image in the surgeon's video-see-through head-mounted display. We also introduce a custom design for this display.

Electromagnetic tracking in image-guided laparoscopic surgery: Comparison with optical tracking and feasibility study of a combined laparoscope and laparoscopic ultrasound system

Medical Physics

In image-guided laparoscopy, optical tracking is commonly employed, but electromagnetic (EM) systems have been proposed in the literature. In this paper, we provide a thorough comparison of EM and optical tracking systems for use in image-guided laparoscopic surgery and a feasibility study of a combined, EM-tracked laparoscope and laparoscopic ultrasound (LUS) image guidance system. Methods: We first assess the tracking accuracy of a laparoscope with two optical trackers tracking retroreflective markers mounted on the shaft and an EM tracker with the sensor embedded at the proximal end, using a standard evaluation plate. We then use a stylus to test the precision of position measurement and accuracy of distance measurement of the trackers. Finally, we assess the accuracy of an image guidance system comprised of an EM-tracked laparoscope and an EM-tracked LUS probe. Results: In the experiment using a standard evaluation plate, the two optical trackers show less jitter in position and orientation measurement than the EM tracker. Also, the optical trackers demonstrate better consistency of orientation measurement within the test volume. However, their accuracy of measuring relative positions decreases significantly with longer distances whereas the EM tracker's

Design and Implementation of a Laparoscope Calibration Method for Augmented Reality Navigation

2015

Intraoperative laparoscopic calibration remains a challenging task. In this work we present a new method and instrumentation for intraoperative camera calibration. Contrary to conventional calibration methods, the proposed technique allows intraoperative laparoscope calibration from single perspective observations, resulting in a standardized scheme for calibrating in a clinical scenario. Results show an average displacement error of 0.52 ± 0.19 mm, indicating sufficient accuracy for clinical use. Additionally, the proposed method is validated clinically by performing a calibration during the surgery.

Stereoscopic augmented reality using ultrasound volume rendering for laparoscopic surgery in children

Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling, 2014

In laparoscopic surgery, live video provides visualization of the exposed organ surfaces in the surgical field, but is unable to show internal structures beneath those surfaces. The laparoscopic ultrasound is often used to visualize the internal structures, but its use is limited to intermittent confirmation because of the need for an extra hand to maneuver the ultrasound probe. Other limitations of using ultrasound are the difficulty of interpretation and the need for an extra port. The size of the ultrasound transducer may also be too large for its usage in small children. In this paper, we report on an augmented reality (AR) visualization system that features continuous hands-free volumetric ultrasound scanning of the surgical anatomy and video imaging from a stereoscopic laparoscope. The acquisition of volumetric ultrasound image is realized by precisely controlling a back-and-forth movement of an ultrasound transducer mounted on a linear slider. Furthermore, the ultrasound volume is refreshed several times per minute. This scanner will sit outside of the body in the envisioned use scenario and could be even integrated into the operating table. An overlay of the maximum intensity projection (MIP) of ultrasound volume on the laparoscopic stereo video through geometric transformations features an AR visualization system particularly suitable for children, because ultrasound is radiation-free and provides higher-quality images in small patients. The proposed AR representation promises to be better than the AR representation using ultrasound slice data.

Multimodal markers for technology-independent integration of augmented reality devices and surgical navigation systems

Virtual Reality

Augmented reality (AR) permits the visualization of pre-operative data in the surgical field of view of the surgeon. This requires the alignment of the AR device’s coordinate system with the used navigation/tracking system. We propose a multimodal marker approach to align an AR device with a tracking system: in our implementation, an electromagnetic tracking system (EMTS). The solution makes use of a calibration method which determines the relationship between a 2D pattern detected by an RGB camera and an electromagnetic sensor of the EMTS. This allowed the projection of a 3D skull model on its physical counterpart. This projection was evaluated using a monocular camera and an optical see-through device (HoloLens 2) (https://www.microsoft.com/en-us/hololens/) achieving an accuracy of less than 2.5 mm in the image plane of the HoloLens 2 (HL2). Additionally, 10 volunteers participated in a user study consisting of an alignment task of a pointer with 25 projections viewed through the ...

Augmented reality navigation system for endoscopic surgery based on three-dimensional ultrasound and computed tomography: Application to 20 clinical cases

International Congress Series, 2005

In the endoscopic surgical fields, more information which could be used intraoperatively is strongly demanded. Three-dimensional reconstructed images are useful imaging modalities to assist the surgeon in endoscopic surgery. We expected a new magneto-optic hybrid 3-D sensor configuration, and have developed an augmented reality navigation system using an accurate threedimensional sensory system that can be utilized in endoscopic surgery. The system has accommodated oblique endoscope, real-time distortion correction of magnetic fields. We have preliminary established dcombinedT navigation system. The complete system consists of a laparoscope, two (magnetic and optic) 3D digitizers, ultrasonographic device, a laparoscopic US probe, and a workstation with a volume rendering accelerator. Augmented reality (AR) visualization, which superimposed the visualized 3D-US images and segmented and rendered CT-based images on captured laparoscopic live images, was achieved. We applied our system to various clinical cases. The system provides us real-time anatomical information which cannot be visualized without navigation system. 3D-US as an imaging modality has the advantage that real-time imaging is acquirable, regardless of organ shift or distortion.