Cytoskeletal proteins with N-terminal signal peptides: plateins in the ciliate Euplotes define a new family of articulins (original) (raw)
Related papers
Comprehensive Physiology, 2011
Cilia and flagella are surface-exposed, finger-like organelles whose core consists of a microtubule (MT)-based axoneme that grows from a modified centriole, the basal body. Cilia are found on the surface of many eukaryotic cells and play important roles in cell motility and in coordinating a variety of signaling pathways during growth, development, and tissue homeostasis. Defective cilia have been linked to a number of developmental disorders and diseases, collectively called ciliopathies. Cilia are dynamic organelles that assemble and disassemble in tight coordination with the cell cycle. In most cells, cilia are assembled during growth arrest in a multistep process involving interaction of vesicles with appendages present on the distal end of mature centrioles, and addition of tubulin and other building blocks to the distal tip of the basal body and growing axoneme; these building blocks are sorted through a region at the cilium base known as the ciliary necklace, and then transported via intraflagellar transport (IFT) along the axoneme toward the tip for assembly. After assembly, the cilium frequently continues to turn over and incorporate tubulin at its distal end in an IFT-dependent manner. Prior to cell division, the cilia are usually resorbed to liberate centrosomes for mitotic spindle pole formation. Here, we present an overview of the main cytoskeletal structures associated with cilia and centrioles with emphasis on the MTassociated appendages, fibers, and filaments at the cilium base and tip. The composition and possible functions of these structures are discussed in relation to cilia assembly, disassembly, and length regulation. C 2012 American Physiological Society.
Journal of Biological Chemistry, 2014
Background: Ciliary microtubules contain hyperstable Ribbons of adjoining protofilaments. Results: Using echinoderm flagella, the locations of Ribbons, tektins, and Ca 2ϩ-binding proteins (related to human epilepsy) are studied biochemically and by immuno-cryo-electron tomography. Conclusion: The locations of these proteins create a biochemically, structurally unique region of ciliary A-microtubules. Significance: The results indicate specialized functions for Ribbons, with potential roles in assembly, motility, and/or signal transduction. Cilia and flagella are conserved, motile, and sensory cell organelles involved in signal transduction and human disease. Their scaffold consists of a 9-fold array of remarkably stable doublet microtubules (DMTs), along which motor proteins transmit force for ciliary motility and intraflagellar transport. DMTs possess Ribbons of three to four hyper-stable protofilaments whose location, organization, and specialized functions have been elusive. We performed a comprehensive analysis of the distribution and structural arrangements of Ribbon proteins from sea urchin sperm flagella, using quantitative immunobiochemistry, proteomics, immuno-cryo-electron microscopy, and tomography. Isolated Ribbons contain acetylated ␣-tubulin, -tubulin, conserved protein Rib45, >95% of the axonemal tektins, and >95% of the calcium-binding proteins, Rib74 and Rib85.5, whose human homologues are related to the cause of juvenile myoclonic epilepsy. DMTs contain only one type of Ribbon, corresponding to protofilaments A11-12-13-1 of the A-tubule. Rib74 and Rib85.5 are associated with the Ribbon in the lumen of the A-tubule. Ribbons contain a single ϳ5-nm wide filament, composed of equimolar tektins A, B, and C, which interact with the nexin-dynein regulatory complex. A summary of findings is presented, and the functions of Ribbon proteins are discussed in terms of the assembly and stability of DMTs, ciliary motility, and other microtubule systems.
Plateins: A Novel Family of Signal Peptide‐Containing Articulins in Euplotid Ciliates1
Journal of …, 2003
In euplotid ciliates, the cortex is reinforced by alveolar plates-proteinaceous scales located within the membranous alveolar sacs, forming a monolayer just below the plasma membrane. This system appears to play a cytoskeletal role analogous to that provided by the fibrous epiplasm found beneath the cortical alveoli in other ciliates. In Euplotes aediculatus, the major alveolar plate proteins (termed a-, p-, and y-plateins) have been identified. Using anti-platein antibodies, an expression library of Euplotes genes was screened, and a platein gene identified, cloned, and completely sequenced. Comparison of its derived amino acid sequence with microsequences obtained directly from purified plateins identified this gene as encoding one of the closely related (3-or y-plateins. The derived protein, of 644 amino acids (74.9 kDa), is very acidic (PI = 4.88). Microsequences from authentic a-platein were then used to design oligonucleotide primers, which yielded, via a PCR-based approach, the sequences of two a-platein genes from E. aediculatus. Even more acidic proteins, the derived al-and a2-plateins contain 536 and 501 residues, respectively. Analyses of their amino acid sequences revealed the plateins to be members of the articulin superfamily of cytoskeletal proteins, first described in Euglena and now identified in the ciliate Pseudomicrothorax and in Plasmodium. The hallmark articulin repetitive motifs (based on degenerate valineand proline-rich 12-mers) are present in all three plateins. In Ply-platein this primary motif domain (27 repeats) is central in the molecule, whereas the primary repeats in the a-plateins lie near their C-termini. A cluster of proline-rich pentameric secondary repeats is found in the C-terminus of Ply-platein, but near the N-terminus of a-plateins. All three plateins contain canonical N-terminal signal sequences, unique among known cytoskeletal proteins. The presence of start-transfer sequences correlates well with the final intra-alveolar location of these proteins. This feature, and significant differences from known articulins in amino acid usage and arrangement within the repeat domains, lead us to propose that the plateins comprise a new family of articulin-related proteins. Efforts to follow microscopically the assembly of plateins into new alveolar plates during pre-fission morphogenesis are underway.
Unusual characteristics of ciliate actins
International microbiology : the official journal of the Spanish Society for Microbiology, 2001
Actin is a cytoskeletal protein that is ubiquitous in eukaryotes, hence the corresponding genes and proteins have been isolated from numerous organisms as different as animals, plants, fungi and protozoa. Several atomic models are available for the monomeric as well as the filamentous form, and more than 70 proteins that bind actin and control filament dynamics have been isolated from diverse eukaryotes. Moreover, the function and dynamics of the actin cytoskeleton in several eukaryotic systems have been depicted in depth. Unlike other protozoa, such as amoeba, actin is not an abundant protein in ciliates, whose cytoskeleton is mainly composed of microtubular arrays. Ciliate actin has been studied in several species, and it was established early on that this ciliate protein is very different from that of other eukaryotes. Similarly, the actin-binding proteins studied in ciliates display great differences with those of other eukaryotes. Consequently, ciliate actin has been considered...
Zoological Science, 2005
Actin is an ancient cytoskeletal protein that plays many essential roles in cell motility. In eukaryotes, its gene belongs to a highly conserved gene family, while the protein is also a member of an actin superfamily comprising various kinds of actin-related proteins (Arps). A ciliate, Tetrahymena, has a unique conventional actin. Data from the TIGR Tetrahymena genome project and our own research suggest the existence of 12 actin-like sequences: four conventional actins, two of Arp4, one each of Arp1, Arp2, Arp3, Arp5, and Arp6, and a novel actin-related protein, tArp. We cloned the entire cDNA sequences of Tetrahymena Arp2 (tArp2), Tetrahymena Arp3 (tArp3), and tArp for the work described herein. In phylogenetic analyses, tArp was not included in any Arp subfamily. Unlike other known Arps, tArp localizes in cilia, and its expression was upregulated after deciliation. To see the precise localization of tArp, cilia were fractionated and analyzed using specific antibodies. tArp was observed preferentially in the ''outer-doublet'' fraction, while actin was found in the ''crude-dynein'' fraction. In immunoelectron microscopy, most of the gold particles were found either on the outer-doublet or central-pair microtubules. These results suggest that tArp is a ciliary component and that it has a unique function in the formation and maintenance of cilia.
Identification of a novel actin-related protein inTetrahymena cilia
Cell Motility and the Cytoskeleton, 2006
Actin is an ancient cytoskeletal protein that plays many essential roles in cell motility. In eukaryotes, its gene belongs to a highly conserved gene family, while the protein is also a member of an actin superfamily comprising various kinds of actin-related proteins (Arps). A ciliate, Tetrahymena, has a unique conventional actin. Data from the TIGR Tetrahymena genome project and our own research suggest the existence of 12 actin-like sequences: four conventional actins, two of Arp4, one each of Arp1, Arp2, Arp3, Arp5, and Arp6, and a novel actin-related protein, tArp. We cloned the entire cDNA sequences of Tetrahymena Arp2 (tArp2), Tetrahymena Arp3 (tArp3), and tArp for the work described herein. In phylogenetic analyses, tArp was not included in any Arp subfamily. Unlike other known Arps, tArp localizes in cilia, and its expression was upregulated after deciliation. To see the precise localization of tArp, cilia were fractionated and analyzed using specific antibodies. tArp was observed preferentially in the ''outer-doublet'' fraction, while actin was found in the ''crude-dynein'' fraction. In immunoelectron microscopy, most of the gold particles were found either on the outer-doublet or central-pair microtubules. These results suggest that tArp is a ciliary component and that it has a unique function in the formation and maintenance of cilia.