Space Manifold Dynamics (original) (raw)

Space Dynamics

María Zanardi

Mathematical Problems in Engineering, 2009

View PDFchevron_right

INVARIANT MANIFOLDS AND SPACE MISSION DESIGN

Azem Hysa

Faculty of Physics, Vilnius University, 2017

View PDFchevron_right

Invariant Manifolds, Lagrangian Trajectories and Space Mission Design

Josep J. Masdemont

Space Manifold Dynamics, 2009

View PDFchevron_right

A note on Newtonian, Lagrangian and Hamiltonian dynamical systems in Riemannian manifolds

Ruslan Sharipov

2001

View PDFchevron_right

Metrics on the Relative Spacecraft Motion Invariant Manifold

Pini Gurfil, Konstantin Kholshevnikov

Annals of the New York Academy of Sciences, 2005

View PDFchevron_right

Robophysical modeling of spacetime dynamics

Shengkai Li

2022

View PDFchevron_right

Editorial Space Dynamics

Vijay S

View PDFchevron_right

Space-Time Dynamics

IOSR Journals

View PDFchevron_right

Surface structure of an Invariant manifold of a halo orbit

Martin Lo

2005

View PDFchevron_right

Space Mechanics

Hanno Essén

2002

View PDFchevron_right

Dynamical systems, Einstein flow and Geometrization

Joseph Kouneiher

View PDFchevron_right

Unified gravito-kinematics theory version march 2019

Peter Hlavačka

View PDFchevron_right

Dynamical Systems, the Three-Body Problem and Space Mission Design

Martin Lo

Equadiff 99, 2000

View PDFchevron_right

Autonomous dynamical system of Einstein–Gauss–Bonnet cosmologies

Nikolaos Chatzarakis

Annals of Physics, 2020

View PDFchevron_right

Dynamical Systems Analysis Using Differential Geometry

GINOUX Jean-Marc

View PDFchevron_right

Frontiers in Relativistic Celestial Mechanics. Volume 1

Sergei M Kopeikin

View PDFchevron_right

On solar system dynamics in general relativity

Jules Simo

International Journal of Geometric Methods in Modern Physics

View PDFchevron_right

Intergalactic spaceflight: an uncommon way to relativistic kinematics and dynamics

Thomas Greber

View PDFchevron_right

BOOK REVIEW: Recent Developments in Gravitation and Mathematical Physics, edited by A. Macias, T. Matos, O. Obregón, and H. Quevedo

Octavio Obregon

General Relativity and Gravitation

View PDFchevron_right

Geometry of modified Newtonian dynamics

Constantinos Skordis

Physical Review D, 2012

View PDFchevron_right

A New Celestial Mechanics Dynamics of Accelerated Systems

Gabriel Barceló

Journal of Applied Mathematics and Physics, 2019

View PDFchevron_right

Celestial Mechanics in Spherical Space

Tuomo Suntola

View PDFchevron_right

The present status of Einsteinian relativistic celestial mechanics

Michael Soffel, Sergei Klioner

1998

View PDFchevron_right

12. Paper: 3. SCI-EXPANDED, Z. Kasap, Weyl-Euler-Lagrange Equations of Motion on Flat Manifold, Advances in Mathematical Physics, (ISSN:1687-9120),, http://dx.doi.org/10.1155/2015/808016, (2015), 1-11.

Zeki Kasap

View PDFchevron_right

Invariant Manifolds, Discrete Mechanics, and Trajectory Design for a Mission to Titan

Stefano Campagnola

Paper AAS, 2009

View PDFchevron_right

Differential Geometry and Relativity Theories vol. 1

David Carfi, David Carfì

2017

View PDFchevron_right

Slow Invariant Manifolds as Curvature of the Flow of Dynamical Systems

J.-m. Ginoux

View PDFchevron_right

Gravitational Dynamics—A Novel Shift in the Hamiltonian Paradigm

Abhay Ashtekar

Universe, 2021

View PDFchevron_right

Space tensors in general relativity II: Physical applications

Enrico Massa

General Relativity and Gravitation, 1974

View PDFchevron_right

Spacelike submanifolds, their umbilical properties and applications to gravitational physics

Nastassja Cipriani

2017

View PDFchevron_right

Necessity of the general relativity revision and free motion of particles in non-Riemannian space-time geometry

Yuri Rylov

Arxiv preprint arXiv:1001.5362, 2010

View PDFchevron_right

Applied General Relativity

Neil Ashby

Springer eBooks, 2019

View PDFchevron_right

Spatially homogeneous dynamics - A unified picture

Robert T Jantzen

Cosmology of the Early Universe, 1984

View PDFchevron_right

Extended Lie Derivative Approach to Gravitational field Dynamics

Stoil Donev

Extended Lie Derivative Approach to Gravitational field Dynamics, 2024

View PDFchevron_right

General-relativistic celestial mechanics. I. Method and definition of reference systems

Michael Soffel

Physical Review D, 1991

View PDFchevron_right