Ionic Liquids as Solvents for Catalytic Conversion of Lignocellulosic Feedstocks (original) (raw)
Abstract
The deconstruction and upgrading of lignocellulosic biomass dissolved in ionic liquids was studied as a potential alternative route to products traditionally synthesized from petroleum. While domestic biomass is a cheaper, lower carbon emission, alternative feedstock to petroleum, its utilization requires the selective deconstruction of the biopolymer to monomeric sugars and upgrading of the sugars to higher value products. Since biomass is soluble in ionic liquids, there is the opportunity to do both the deconstruction and secondary upgrading using "one-pot" homogeneous catalysis. The primary focus of this work was to understand the kinetics of both biomass deconstruction and secondary sugar chemistry in ionic liquids. Biomass is a complex collection of molecule that consists of three primary components, cellulose, hemicellulose, and lignin. Since cellulose is the primary component, accounting for roughly 45 wt% of the raw biomass on a dry basis, initial studies aimed to understand the hydrolysis of dissolved cellulose to its sugar residue glucose. Using microcrystalline Avicel cellulose as a model, the rate laws and activation energies of cellulose hydrolysis and glucose dehydration were determined in the ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]). No evidence of oligosaccharides was observed, suggesting that hydrolysis occurs preferentially at chain ends and is irreversible. Gradually adding water to the reaction solution, so as not to precipitate cellulose but also limit the secondary dehydration of the resulting glucose to 5-hydroxymethyl furfural (5-HMF), significantly increased glucose yield and limited production of degradation products (humins). Several mechanisms were proposed to explain the effects of water, and possible routes to humin formation. While understanding the reactivity of model compounds is important to the development of biomass conversion technologies, it is critical to understand how the components of biomass react in their native form. An investigation was carried out to compare the reactivity of cellulose and hemicellulose model compounds to both pretreated and miscanthus grass in 1-ethyl-3methylimidazolium chloride ([Emim][Cl]). Activation energies of model compounds were compared with the native component in raw biomass. Significant rate decreases in hydrolysis of the cellulosic and hemicellulosic Table of Contents List of Figures .
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (128)
- G. W. Huber, S. Iborra, A. Corma, Chemical Reviews 2006, 106, 4044- 4098.
- J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chemical Reviews 2010, 110, 3552-3599.
- R. D. Perlack, B. J. Stokes, (Ed.: U. S. D. o. Energy), Oak Ridge National Laboratory, 2011.
- W. B. Betts, R. K. Dart, A. S. Ball, S. L. Pedlar, BIOSYNTHESIS AND STRUCTURE OF LIGNOCELLULOSE, 1991.
- S. Van de Vyver, J. Geboers, P. A. Jacobs, B. F. Sels, Chemcatchem 2011, 3, 82-94.
- O. A. El Seoud, A. Koschella, L. C. Fidale, S. Dorn, T. Heinze, Biomacromolecules 2007, 8, 2629-2647.
- R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, Journal of the American Chemical Society 2002, 124, 4974-4975; D. A. Fort, R. C. Remsing, R. P. Swatloski, P. Moyna, G. Moyna, R. D. Rogers, Green Chemistry 2007, 9, 63-69.
- R. C. Remsing, R. P. Swatloski, R. D. Rogers, G. Moyna, Chemical Communications 2006, 1271-1273.
- P. Maki-Arvela, I. Anugwom, P. Virtanen, R. Sjoholm, J. P. Mikkola, Industrial Crops and Products 2010, 32, 175-201.
- C. Sievers, I. Musin, T. Marzialetti, M. B. V. Olarte, P. K. Agrawal, C. W. Jones, Chemsuschem 2009, 2, 665-671.
- C. Z. Li, Z. K. B. Zhao, Advanced Synthesis & Catalysis 2007, 349, 1847- 1850;
- C. Z. Li, Q. Wang, Z. K. Zhao, Green Chemistry 2008, 10, 177-182;
- J. B. Binder, J. J. Blank, A. V. Cefali, R. T. Raines, Chemsuschem 2010, 3, 1268-1272; J. B. Binder, R. T. Raines, Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 4516- 4521.
- J. B. Binder, A. V. Cefali, J. J. Blank, R. T. Raines, Energy & Environmental Science 2010, 3, 765-771.
- H. B. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science 2007, 316, 1597-1600.
- T. Stahlberg, W. J. Fu, J. M. Woodley, A. Riisager, Chemsuschem 2011, 4, 451-458.
- J. Guan, Q. A. Cao, X. C. Guo, X. D. Mu, Computational and Theoretical Chemistry 2011, 963, 453-462.
- G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, Science 2005, 308, 1446-1450.
- W. B. Betts, R. K. Dart, A. S. Ball, S. L. Pedlar, BIOSYNTHESIS AND STRUCTURE OF LIGNOCELLULOSE, 1991.
- J. N. Chheda, J. A. Dumesic, Catalysis Today 2007, 123, 59-70; J. N. Chheda, G. W. Huber, J. A. Dumesic, Angewandte Chemie-International Edition 2007, 46, 7164-7183.
- M. Chidambaram, A. T. Bell, Green Chemistry 2010, 12, 1253-1262.
- Y. Q. Pu, N. Jiang, A. J. Ragauskas, Journal of Wood Chemistry and Technology 2007, 27, 23-33;
- R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, Journal of the American Chemical Society 2002, 124, 4974- 4975;
- R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, Abstracts of Papers American Chemical Society 2003, 225, CELL 131.
- R. C. Remsing, R. P. Swatloski, R. D. Rogers, G. Moyna, Chemical Communications 2006, 1271-1273; L. Feng, Z. I. Chen, Journal of Molecular Liquids 2008, 142, 1-5.
- C. Z. Li, Z. K. B. Zhao, Advanced Synthesis & Catalysis 2007, 349, 1847- 1850;
- C. Z. Li, Q. Wang, Z. K. Zhao, Green Chemistry 2008, 10, 177-182.
- J. B. Binder, R. T. Raines, Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 4516-4521.
- L. Vanoye, M. Fanselow, J. D. Holbrey, M. P. Atkins, K. R. Seddon, Green Chemistry 2009, 11, 390-396.
- T. Heinze, M. Schobitz, M. Pohl, F. Meister, Journal of Polymer Science Part a-Polymer Chemistry 2008, 46, 3853-3859.
- R. Simha, Journal of Applied Physics 1941, 12, 569-578;
- S. E. Jacobsen, C. E. Wyman, Applied Biochemistry and Biotechnology 2000, 84-6, 81-96.
- Y. T. Zhang, H. B. Du, X. H. Qian, E. Y. X. Chen, Energy & Fuels 2010, 24, 2410-2417.
- J. F. Saeman, Industrial and Engineering Chemistry 1945, 37, 43-52;
- B. Girisuta, L. Janssen, H. J. Heeres, Chemical Engineering Research & Design 2006, 84, 339-349; K. Freudenberg, G. Blomqvist, Berichte Der Deutschen Chemischen Gesellschaft 1935, 68, 2070-2082.
- R. Rinaldi, N. Meine, J. vom Stein, R. Palkovits, F. Schuth, Chemsuschem 2010, 3, 266-276.
- T. P. Nevell, W. R. Upton, Carbohydrate Research 1976, 49, 163-174;
- B. Capon, Chemical Reviews 1969, 69, 407-&.
- X. L. Tong, Y. Ma, Y. D. Li, Applied Catalysis a-General 2010, 385, 1-13;
- J. B. Binder, J. J. Blank, A. V. Cefali, R. T. Raines, Chemsuschem 2010, 3, 1268-1272;
- M. J. Antal, W. S. L. Mok, G. N. Richards, Carbohydrate Research 1990, 199, 91-109;
- M. J. Antal, T. Leesomboon, W. S. Mok, G. N. Richards, Carbohydrate Research 1991, 217, 71-85.
- J. B. Binder, A. V. Cefali, J. J. Blank, R. T. Raines, Energy & Environmental Science 2010, 3, 765-771.
- D. W. Harris, M. S. Feather, Journal of the American Chemical Society 1975, 97, 178-182.
- X. H. Qian, M. R. Nimlos, M. Davis, D. K. Johnson, M. E. Himmel, Carbohydrate Research 2005, 340, 2319-2327.
- M. R. Nimlos, X. H. Qian, M. Davis, M. E. Himmel, D. K. Johnson, Journal of Physical Chemistry A 2006, 110, 11824-11838.
- F. S. Asghari, H. Yoshida, Industrial & Engineering Chemistry Research 2007, 46, 7703-7710;
- R. Hashaikeh, I. S. Butler, J. A. Kozinski, Energy & Fuels 2006, 20, 2743-2747.
- C. Sievers, I. Musin, T. Marzialetti, M. B. V. Olarte, P. K. Agrawal, C. W. Jones, Chemsuschem 2009, 2, 665-671;
- C. Sievers, M. B. Valenzuela- Olarte, T. Marzialetti, D. Musin, P. K. Agrawal, C. W. Jones, Industrial & Engineering Chemistry Research 2009, 48, 1277-1286;
- R. Weingarten, J. Cho, W. C. Conner, G. W. Huber, Green Chemistry 2010, 12, 1423-1429.
- S. H. Dorcheus, D. G. Williams, Journal of Organic Chemistry 1963, 28, 775-&;
- H. B. Wood, H. W. Diehl, H. G. Fletcher, Journal of the American Chemical Society 1957, 79, 1986-1988; T. W. Greene, P. G. M. Wuts, Protecting Groups in Organic Synthesis, 3 rd ed., John Wiley & Sons Inc., New York, 1999.
- K. G. Joback, R. C. Reid, Chemical Engineering Communications 1987, 57, 233-243;
- S. P. Verevkin, V. N. Emel'yanenko, E. N. Stepurko, R. V. Ralys, D. H. Zaitsau, A. Stark, Industrial & Engineering Chemistry Research 2009, 48, 10087-10093.
- J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chemical Reviews 2010, 110, 3552-3599; G. W. Huber, S. Iborra, A. Corma, Chemical Reviews 2006, 106, 4044-4098; W. B. Betts, R. K. Dart, A. S. Ball, S. L. Pedlar, BIOSYNTHESIS AND STRUCTURE OF LIGNOCELLULOSE, 1991.
- D. A. Fort, R. C. Remsing, R. P. Swatloski, P. Moyna, G. Moyna, R. D. Rogers, Green Chemistry 2007, 9, 63-69; Y. Q. Pu, N. Jiang, A. J. Ragauskas, Journal of Wood Chemistry and Technology 2007, 27, 23-33;
- I. Kilpelainen, H. Xie, A. King, M. Granstrom, S. Heikkinen, D. S. Argyropoulos, Journal of Agricultural and Food Chemistry 2007, 55, 9142- 9148;
- O. A. El Seoud, A. Koschella, L. C. Fidale, S. Dorn, T. Heinze, Biomacromolecules 2007, 8, 2629-2647.
- R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, Journal of the American Chemical Society 2002, 124, 4974-4975.
- J. B. Binder, R. T. Raines, Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 4516-4521.
- L. Vanoye, M. Fanselow, J. D. Holbrey, M. P. Atkins, K. R. Seddon, Green Chemistry 2009, 11, 390-396.
- C. Sievers, I. Musin, T. Marzialetti, M. B. V. Olarte, P. K. Agrawal, C. W. Jones, Chemsuschem 2009, 2, 665-671;
- R. Weingarten, J. Cho, W. C. Conner, G. W. Huber, Green Chemistry 2010, 12, 1423-1429.
- C. Somerville, H. Youngs, C. Taylor, S. C. Davis, S. P. Long, Science 2010, 329, 790-792.
- A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, 2008.
- S. J. Dee, A. T. Bell, ChemSusChem, submitted, 2011.
- K. Enslow, A. T. Bell, unpublished work, 2011.
- J. A. Rollin, Z. G. Zhu, N. Sathitsuksanoh, Y. H. P. Zhang, Biotechnology and Bioengineering 2011, 108, 22-30.
- R. D. Hartley, C. W. Ford, Acs Symposium Series 1989, 399, 137-145;
- O. Eriksson, D. A. I. Goring, B. O. Lindgren, Wood Science and Technology 1980, 14, 267-279.
- S. Y. Jia, B. J. Cox, X. W. Guo, Z. C. Zhang, J. G. Ekerdt, Chemsuschem 2010, 3, 1078-1084.
- N. S. Mosier, C. M. Ladisch, M. R. Ladisch, Biotechnology and Bioengineering 2002, 79, 610-618.
- M. Zavrel, D. Bross, M. Funke, J. Buchs, A. C. Spiess, Bioresource Technology 2009, 100, 2580-2587.
- G. W. Huber, S. Iborra, A. Corma, Chemical Reviews 2006, 106, 4044- 4098.
- J. B. Binder, R. T. Raines, Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 4516-4521; S. Dee, A. T. Bell, Green Chemistry 2011, 13, 1467-1475.
- S. J. Dee, A. T. Bell, ChemSusChem 2011, 4, 1166-1173.
- J. N. Chheda, J. A. Dumesic, Catalysis Today 2007, 123, 59-70.
- H. B. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science 2007, 316, 1597-1600.
- T. Stahlberg, W. J. Fu, J. M. Woodley, A. Riisager, Chemsuschem 2011, 4, 451-458;
- T. Stahlberg, M. G. Sorensen, A. Riisager, Green Chemistry 2010, 12, 321-325; C. Z. Li, Z. H. Zhang, Z. B. K. Zhao, Tetrahedron Letters 2009, 50, 5403-5405; Z. H. Zhang, Q. A. Wang, H. B. Xie, W. J. Liu, Z. B. Zhao, Chemsuschem 2011, 4, 131-138;
- S. Q. Hu, Z. F. Zhang, J. L. Song, Y. X. Zhou, B. X. Han, Green Chemistry 2009, 11, 1746-1749;
- G. Yong, Y. G. Zhang, J. Y. Ying, Angewandte Chemie-International Edition 2008, 47, 9345-9348;
- M. J. Climent, A. Corma, S. Iborra, Green Chemistry 2011, 13, 520-540.
- J. B. Binder, A. V. Cefali, J. J. Blank, R. T. Raines, Energy & Environmental Science 2010, 3, 765-771.
- Y. M. Zhang, E. A. Pidko, E. J. M. Hensen, Chemistry-a European Journal 2011, 17, 5280-5287.
- X. H. Qian, M. R. Nimlos, M. Davis, D. K. Johnson, M. E. Himmel, Carbohydrate Research 2005, 340, 2319-2327.
- C. Sievers, I. Musin, T. Marzialetti, M. B. V. Olarte, P. K. Agrawal, C. W. Jones, Chemsuschem 2009, 2, 665-671.
- Q. Cao, X. C. Guo, S. X. Yao, J. Guan, X. Y. Wang, X. D. Mu, D. K. Zhang, Carbohydrate Research 2011, 346, 956-959.
- C. Moreau, A. Finiels, L. Vanoye, Journal of Molecular Catalysis a- Chemical 2006, 253, 165-169.
- F. L. Yang, Q. S. Liu, X. F. Bai, Y. G. Du, Bioresource Technology 2011, 102, 3424-3429.
- Y. T. Zhang, H. B. Du, X. H. Qian, E. Y. X. Chen, Energy & Fuels 2010, 24, 2410-2417; T. L. Amyes, S. T. Diver, J. P. Richard, F. M. Rivas, K. Toth, Journal of the American Chemical Society 2004, 126, 4366-4374.
- Y. P. Zhu, J. Zajicek, A. S. Serianni, Journal of Organic Chemistry 2001, 66, 6244-6251;
- A. S. Amarasekara, L. D. Williams, C. C. Ebede, Carbohydrate Research 2008, 343, 3021-3024;
- W. Funcke, C. Vonsonntag, C. Triantaphylides, Carbohydrate Research 1979, 75, 305- 309;
- S. R. Maple, A. Allerhand, Journal of the American Chemical Society 1987, 109, 3168-3169.
- E. A. Khokhlova, V. V. Kachala, V. P. Ananikov, ChemSusChem 2012, 5, 783-789.
- P. Gallezot, Chemical Society Reviews 2012, 41, 1538-1558; J. B. Binder, R. T. Raines, Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 4516-4521.
- S. J. Dee, A. T. Bell, ChemSusChem 2011, 4, 1166-1173.
- S. Dee, A. T. Bell, Green Chemistry 2011, 13, 1467-1475.
- J. B. Binder, A. V. Cefali, J. J. Blank, R. T. Raines, Energy & Environmental Science 2010, 3, 765-771.
- H. B. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science 2007, 316, 1597-1600.
- Z. H. Zhang, Q. A. Wang, H. B. Xie, W. J. Liu, Z. B. Zhao, Chemsuschem 2011, 4, 131-138.
- T. Stahlberg, W. J. Fu, J. M. Woodley, A. Riisager, Chemsuschem 2011, 4, 451-458.
- H. E. van Dam, A. P. G. Kieboom, H. van Bekkum, Starch -Stärke 1986, 38, 95-101.
- Y. P. Zhu, J. Zajicek, A. S. Serianni, Journal of Organic Chemistry 2001, 66, 6244-6251.
- J. C. Norrild, H. Eggert, Journal of the Chemical Society-Perkin Transactions 2 1996, 2583-2588.
- Q. Cao, X. C. Guo, S. X. Yao, J. Guan, X. Y. Wang, X. D. Mu, D. K. Zhang, Carbohydrate Research 2011, 346, 956-959.
- E. A. Khokhlova, V. V. Kachala, V. P. Ananikov, ChemSusChem 2012, 5, 783-789.
- L. D. Hayward, S. J. Angyal, Carbohydrate Research 1977, 53, 13-20.
- S. T. W. Graham, C. B. Fryhle, Organic Chemistry, 8 ed., John Wiley & Sons, Inc., 2004.
- J. E. McMurry, Organic Chemistry, 2nd edition ed., Brooks/Cole, 1988.
- J. Guan, Q. A. Cao, X. C. Guo, X. D. Mu, Computational and Theoretical Chemistry 2011, 963, 453-462.
- S. J. Angyal, G. S. Bethell, Australian Journal of Chemistry 1976, 29, 1249-1265;
- A. S. Amarasekara, L. D. Williams, C. C. Ebede, Carbohydrate Research 2008, 343, 3021-3024;
- W. Funcke, C. Vonsonntag, C. Triantaphylides, Carbohydrate Research 1979, 75, 305- 309;
- S. R. Maple, A. Allerhand, Journal of the American Chemical Society 1987, 109, 3168-3169.
- F. H. Dean, Journal of Colloid and Interface Science 1967, 24, 280-&.
- M. Chidambaram, A. T. Bell, Green Chemistry 2010, 12, 1253-1262;
- G. Dobele, G. Rossinskaja, G. Telysheva, D. Meier, O. Faix, Elsevier Science Bv, 1999, pp. 307-317;
- M. S. Miftakhov, F. A. Valeev, I. N. Gaisina, Uspekhi Khimii 1994, 63, 922-936.
- F. S. Asghari, H. Yoshida, Industrial & Engineering Chemistry Research 2007, 46, 7703-7710.
- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179.
- M. H. Lietzke, M. L. Holt, Inorganic Syntheses 1950, 3, 163-166.
- ChemBioDraw Ultra 12.0, CambridgeSoft.
- H. J. Reich, Vol. 2012, http://www.chem.wisc.edu/areas/reich/handouts/nmr-c13/cdata.htm, 2011.
- B. Capon, A. K. Siddhanta, Journal of Organic Chemistry 1984, 49, 255- 257.
- S. Yu, H. M. Brown, X. W. Huang, X. D. Zhou, J. E. Amonette, Z. C. Zhang, Applied Catalysis a-General 2009, 361, 117-122.