Molecular cloning and sequencing of cDNA for rat cathepsin H Homology in pro-peptide regions of cysteine proteinases (original) (raw)
Related papers
Journal of Biological Chemistry, 1998
We have identified and characterized a novel human cysteine proteinase of the papain family. A full-length cDNA for this enzyme was cloned from a human brain cDNA library. Nucleotide sequence analysis revealed that the isolated cDNA codes for a polypeptide of 303 amino acids, tentatively called cathepsin Z, that exhibits structural features characteristic of cysteine proteinases. Fluorescent in situ hybridization experiments revealed that the human cathepsin Z gene maps to chromosome 20q13, a location that differs from all cysteine proteinase genes mapped to date. The cDNA encoding cathepsin Z was expressed in Escherichia coli as a fusion protein with glutathione S-transferase, and after purification, the recombinant protein was able to degrade the synthetic peptide benzyloxycarbonyl-Phe-Arg-7-amido-4-methylcoumarin, used as a substrate for cysteine proteinases. Northern blot analysis demonstrated that cathepsin Z is widely expressed in human tissues, suggesting that this enzyme could be involved in the normal intracellular protein degradation taking place in all cell types. Cathepsin Z is also ubiquitously distributed in cancer cell lines and in primary tumors from different sources, suggesting that this enzyme may participate in tumor progression as reported for other cathepsins. Finally, on the basis of a series of distinctive structural features, including diverse peptide insertions and an unusual short propeptide, together with its unique chromosomal location among cysteine proteinases, we propose that cathepsin Z may be the first representative of a novel subfamily of this class of proteolytic enzymes.
Archives of Biochemistry and Biophysics, 1992
Proteolytically active complexes of the proteinase cathepsin L, with an endogenous inhibitor of cysteine proteinases, were purified from sheep liver. The complexes were active against the synthetic substrate Z-Phe-Arg-NHMec and also the proteins axocasein and gelatin. The composition of the complexes was demonstrated by Western blotting, after reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with monospecific antibodies raised against purified sheep liver cathepsin L and purified sheep liver cysteine proteinase inhibitor (probably stefin B). Similar complexes could be formed in vitro, by coincubation of purified sheep liver cathepsin L with the purified sheep liver cystatin at a pH of 5.5 or higher. 0 ISSZ Academic PMS, IEW.
Biochemical and Biophysical Research Communications, 1999
A novel human cDNA encoding a cysteine protease of the papain family named cathepsin F is reported. The mature part of the predicted protease precursor displays between 26% and 42% identity to other human cysteine proteases while the proregion is unique by means of length and sequence. The very long proregion of the cathepsin F precursor (251 amino acid residues) can be divided into three regions: a C-terminal domain similar to the pro-segment of cathepsin L-like enzymes, a 50 residue flexible linker peptide, and an N-terminal domain predicted to adopt a cystatin-like fold. Cathepsin F would therefore be the first cysteine protease zymogen containing a cystatin-like domain.
Amino acid sequence of human liver cathepsin B
FEBS Letters, 1985
The complete amino acid sequence of cathepsin B (EC 3.4.22.1) from human liver was determined. The 252-residue sequence was obtained by automated solid-phase Edman degradation of the light and heavy chain resulting from limited proteolysis of the single-chain enzyme and of fragments produced by cyanogen bromide and enzymatic cleavage of the heavy chain. Human liver cathepsin B has 83.7% identical residues with the corresponding enzyme from rat liver. Comparison of both mammalian cathepsin B sequences with the sequence of papain provides further evidence that lysosomal and plant cysteine proteinases have evolved from a common ancestor and share a similar catalytic mechanism.
European Journal of Biochemistry, 2000
Cathepsin L-like cysteine proteinases contain an evolutionarily highly conserved a-helical motif in the proregion. This is called the ER(F/W)N(I/V)N motif according to the conserved amino acids along one side of the helix. We studied the function of this motif using site-directed mutagenesis experiments of human procathepsin S. We replaced each of these amino acids with alanine and constructed deletion mutants lacking parts of the helix. All mutants were expressed in HEK 293 cells, but only one, W52A, was not processed to mature cathepsin S, nor was it phosphorylated or secreted into the culture medium. W52 is part of the hydrophobic core in the propeptide region of cathepsin S comprising two additional tryptophan residues, W28 and W31, also conserved among cathepsin L-like cysteine peptidases. Replacement of the latter with alanine led to consequences similar to those with the W52A mutation. Recombinant propeptides containing mutations of one of the three tryptophan residues were three orders of magnitude less effective as inhibitors of mature cathepsin S than the wild-type propeptide. The results point to a dominant role of the respective hydrophobic stack in the proper folding, transport and maturation of procathepsin S and related cathepsin L-like cysteine proteinases.
Cysteine cathepsins: Cellular roadmap to different functions
Biochimie, 2008
Cysteine cathepsins belong to the papain-like family C1 of clan CA cysteine peptidases. These enzymes are ubiquitously expressed and exert their proteolytic activity mainly, but not exclusively within the compartments along the endocytic pathway. Moreover, cysteine cathepsins are active in pericellular environments as soluble enzymes or bound to cell surface receptors at the plasma membrane, and possibly even within secretory vesicles, the cytosol, mitochondria, and within the nuclei of eukaryotic cells. Proteolytic actions performed by cysteine cathepsins are essential in the maintenance of homeostasis and depend heavily upon their correct sorting and trafficking within cells. As a consequence, the numerous and diverse approaches to identification, qualitative and quantitative determination, and visualization of cysteine cathepsin functions in vitro, in situ, and in vivo cover the entire spectrum of biochemistry, molecular and cell biology. This review focuses upon the transport pathways directing cysteine cathepsins to their points of action and thus emphasizes the broader role and functionality of cysteine cathepsins in a number of specific cellular locales. Such understanding will provide a foundation for future research investigating the involvement of these peptidases with their substrates, inhibitors, and the intertwined proteolytic networks at the hubs of complex biological systems.
Mouse cathepsin F: cDNA cloning, genomic organization and chromosomal assignment of the gene
Gene, 2000
A murine cysteine protease of the papain family was identified by dbEST-database search. A 1.87 kb full-length cDNA encoding a predicted polypeptide of 462 amino acids was sequenced. Since the encoded polypeptide shows more than 80% sequence identity with human cathepsin F, it is most likely that this cDNA represents the murine homologue of cathepsin F, and it was therefore named accordingly. Murine cathepsin F exhibits a domain structure typical for papain-like cysteine proteases, a 20 amino acid N-terminal hydrophobic signal sequence followed by an extraordinarily long propeptide of 228 amino acids and the domain of the mature protease comprising 214 amino acids. The mature region contains all features characteristic of a papainlike cysteine protease, including the highly conserved cysteine, histidine and asparagine residues of the 'catalytic triad'. Genomic clones covering the murine cathepsin F gene were isolated. The mouse cathepsin F gene consists of 14 exons and 13 introns and spans 5.8 kb. Murine cathepsin F was mapped to chromosome 19, a region with synteny homology to a region of human chromosome 11 to which human cathepsin F has been mapped previously. Northern blot analysis of RNA from multiple tissues revealed a ubiquitous expression of cathepsin F in mouse and man.
Potency and Selectivity of the Cathepsin L Propeptide as an Inhibitor of Cysteine Proteases †
Biochemistry, 1996
The cathepsin L propeptide (phcl-2) was expressed in Saccharomyces cereVisiae using a human procathepsin L/R-factor fusion construct containing a stop codon at position -1 (the C-terminal amino acid of the proregion). Since the yield after purification was very low, the cathepsin L propeptide was also obtained by an alternate procedure through controlled processing of an inactive mutant of procathepsin L (Cys25Ser/Thr110Ala) expressed in Pichia pastoris, by small amounts of cathepsin L. The peptide resulting from the cleavage of the proenzyme (phcl-1) was then purified by HPLC. The purified propeptides were characterized by N-terminal sequencing and mass spectrometry and correspond to incomplete forms of the proregion (87 and 81 aa for phcl-1 and phcl-2 respectively, compared to 96 aa for the complete cathepsin L propeptide). The two peptides were found to be potent and selective inhibitors of cathepsin L at pH 5.5, with K i values of 0.088 nM for phcl-1 and 0.66 nM for phcl-2. The K i for inhibition of cathepsin S was much higher (44.6 nM with phcl-1), and no inhibition of cathepsin B or papain could be detected at up to 1 µM of the propeptide. The inhibitory activity was also found to be strongly pHdependent. Two synthetic peptides of 75 and 44 aa corresponding to N-terminal truncated versions of the propeptide were also prepared by solid phase synthesis and displayed K i values of 11 nM and 2900 nM, respectively, against cathepsin L. The data obtained for the 4 propeptide derivatives of various lengths indicate that the first 20 residues in the N-terminal region of the propeptide are more important for inhibition than the C-terminal region which contributes little to the overall inhibitory activity. † NRCC Publication No. 39920. Supported by postdoctoral fellowships from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil (E.C.), as well as NATO and the Ministère
FEBS Letters, 1999
A novel mouse cysteine protease of the papain family was identified by searching the dbEST database. A 1.28 kb fulllength cDNA was obtained which contains an open reading frame of 999 nucleotides and encodes a predicted polypeptide of 333 amino acids. The deduced polypeptide exhibits features characteristic of cysteine proteases of the papain type including the highly conserved residues of the catalytic triad, and was hence named cathepsin J. Cathepsin J represents the murine homologue of a previously described rat cathepsin L-related protein. Mature cathepsin J shows 59.3% identity to mouse cathepsin L and contains the characteristic ER(F/W)NIN motif within the propeptide indicating that this protease belongs to the subgroup of cathepsin L-like cysteine proteases. Northern blot analysis of various tissues revealed a placenta-restricted expression. This expression pattern may suggest a role of cathepsin J in embryo implantation and/or placental function. Ctsj was mapped to mouse chromosome 13 in the vicinity of cathepsin L suggesting that cathepsin J may have arisen by gene duplication from cathepsin L or a common ancestral gene.