Diauxic growth of Geotrichum candidum and Penicillium camembertii on amino acids and glucose (original) (raw)

Abstract

The purpose of this work was to examine physiological differences between the yeast Geotrichum candidum and the mould Penicillium camembertii, organisms involved in the industrial process of cheese ripening. Three groups of amino acids had previously been characterized, based on their carbon assimilation and dissimilation by the two fungal species. For both of them, a diauxic growth phase had been shown for a group of amino acids, which however had not been examined in light of physiological differences between the two microorganisms. In this work, the higher level of enzymatic activities of P. camembertii if compared to G. candidum was confirmed since a continuous and sequential use of both carbon substrates, glucose and arginine, was recorded during P. camembertii culture; while after glucose depletion, a clear stationary phase was recorded before the assimilation of the considered amino acid as both carbon and nitrogen sources by G. candidum. This behaviour was confirmed for the three amino acids tested, i.e., arginine, proline and glutamic acid. Contrarily, during the two growth phases, on glucose and the test amino acid, respectively, higher growth rates were recorded for G. candidum compared to P. camembertii, showing higher substrate utilisation efficiency by G. candidum. Improving the knowledge regarding the metabolization of amino acids might be helpful in designing strategies aiming at improving processes such as cheese ripening. The work should be followed up by similar works using small peptides.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (36)

  1. Adour, L., Aziza, M., Couriol, C. and Amrane, A., Amino acids as carbon, energy and nitrogen sources for Penicillium camembertii. J. Chem. Technol. Biotechnol., 81, 573-579 (2006).
  2. Adour, L., Couriol, C. and Amrane, A., Diauxic growth of Penicillium camembertii on glucose and arginine. Enzyme Microb. Technol., 36, 198-202 (2005).
  3. Adour, L., Couriol, C. and Amrane, A., The effect of lactate addition on the growth of Penicillium camembertii on glutamate. J. Biotechnol., 114, 307-314 (2004).
  4. Adour, L., Couriol, C., Amrane, A. and Prigent, Y., Growth of Geotrichum candidum and Penicillium camemberti in liquid media in relation with the consumption of carbon and nitrogen sources and the release of ammonia and carbon dioxide. Enzyme Microb. Technol., 31, 533-542 (2002).
  5. Aldarf, M., Amrane, A. and Prigent, Y., Reconstruction of the biomass history from carbon and nitrogen substrate consumption, ammonia release and proton transfer during solid cultures of Geotrichum candidum and Penicillium camembertii. Appl. Microbiol. Biotechnol., 58, 823-829 (2002).
  6. Amrane, A., Pestel, V. and Prigent, Y., Submerged cultures of Geotrichum candidum and Penicillium camembertii on amino acids and glucose. J. Gen. Appl. Microbiol., 49, 251-256 (2003).
  7. Amrane, A., Plihon, F. and Prigent, Y., Proton transfer in relation to growth of Geotrichum candidum and Penicillium camembertii in synthetic liquid media. Enzyme Microb. Technol., 24, 561-568 (1999).
  8. Amrane, A. and Prigent, Y., Comparison of growth parameters for Geotrichum candidum Geo 17 and Penicillium camemberti LV2 in solid and liquid cultures. Lait, 77, 641-648 (1997).
  9. Amrane, A. and Prigent, Y., A new turbidimetric device for on-line monitoring of growth of filamentous microorganisms. J. Microbiol. Methods, 33, 37-43 (1998).
  10. Aziza, M., Adour, L., Couriol, C. and Amrane, A., Analysis of batch submerged cultivations of Geotrichum candidum growing in lactate with either glutamate or lysine. J. Chem. Technol. Biotechnol., 79, 1412-1416 (2004).
  11. Aziza, M. and Amrane, A., Carbon assimilation and dissimilation during growth of Geotrichum candidum on amino acids and glucose. J. Chem. Technol. Biotechnol., 82, 796-801 (2007).
  12. Aziza, M. and Amrane, A., Commensalism during submerged mixed culture of Geotrichum candidum and Penicillium camembertii on glutamate and lactate. Process Biochem., 41, 2452-2457 (2006).
  13. Aziza, M., Couriol, C., Amrane, A. and Boutrou, R., Evidences for synergistic effects of Geotrichum candidum on Penicillium camembertii growing on cheese juice. Enzyme Microb. Technol., 37, 218-224 (2005).
  14. Basak, S., Velayudhan, A. and Ladish, M. R., Simulation of diauxic production of cephalosporin C by Cephalosporium acremonium: lag model for fed-batch fermentation. Biotechnol. Prog., 11, 626- 631 (1995).
  15. Bockelmann, W., Secondary cheese cultures. In Technology of cheesemaking, Law, B. A., (Ed.), Academic Press, Sheffield, p. 123 (2001).
  16. Boutrou, R., Aziza, M. and Amrane, A., Enhanced proteolytic activities of Geotrichum candidum and Penicillium camembertii in mixed culture. Enzyme Microb. Technol., 39, 325-331 (2006).
  17. Deacon, J. W., Modern Mycology. (3rd Ed.) Blackwell Science, Oxford (1997).
  18. De Figuero, R. M., Benito de Cerdenas, I. L., Sesma, L., Alvarez, F., De Ruiz Holgado, A. P. and Oliver, G., Inducible transport of citrate in Lactobacillus rhamnosus ATCC 7469. J. Appl. Bacteriol., 81, 348-354 (1996).
  19. Egli, T., The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. Adv. Microb. Ecol., 14, 797-806 (1995).
  20. Engel, E., Tournier, C. and Le Quéré, J. L., Evolution of the composition of a selected bitter Camembert cheese during ripening: release and migration of taste-active compounds. J. Agric. Food Chem., 49, 2940-2947 (2001).
  21. Fox, P. F., Law, J., Mc Sweeney, P. L. H. and Wallace, J., Biochemistry of cheese ripening. In Cheese: Chemistry, Physics and Microbiology, Major cheese groups. Fox, P. F., (Ed.), Chapman & Hall, Glasgow, Vol. 2, p. 389 (1993).
  22. Fox, P. F., Lucey, J. A. and Cogan, T. M., Glycolysis and related reactions during cheese manufacture Brazilian Journal of Chemical Engineering and ripening. Crit. Rev. Food Sci. Nutr., 29, 237- 253 (1990).
  23. Gaucheron, F., Le Graët, Y., Piot, M. and Boyaval, E., Determination of anions of milk by ion chromatography. Lait, 76, 433-443 (1996).
  24. Greenberg, R. S. and Ledford, L. S., Deamination of glutamic and aspartic acids by Geotrichum candidum. J. Dairy Sci., 62, 368-372 (1979).
  25. Gripon, J. C., Flavour and texture in soft cheeses. In Microbiology and Biochemistry of Cheeses and Fermented Milks, Law, B. A., (Ed.), Academic Press, London, p. 95 (1997).
  26. Hynes, E., Ogier, J. C., Lamberet, G. and Delacroix- Buchet, A., The influence of starter and adjunct lactobacilli culture on the ripening of washed curd cheeses. Braz. J. Chem. Eng., 19, 397-402 (2002).
  27. Jones, K. D. and Kompala, D. S., Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. J. Biotechnol., 71, 105-131 (1999).
  28. Kremling, A., Bettenbrock, K., Laube, B., Jahreis, K., Lengeler, J. W. and Gilles, E. D., The organization of metabolic reaction networks. III. Application for diauxic growth on glucose and lactose. Metabolic Eng., 3, 362-379 (2001).
  29. Lenoir, J., The proteasic activity in Camembert type soft cheeses. Rev. Lait. Fr., 275, 231-243 (1970).
  30. Maachi, R., Abousseoud, M. and Chaabane, T., Kinetics of biodegradation of petroleum by Pseudomonas sp. Desalination, 139, 367 (2001).
  31. Molimard, P., Bouvier, I., Vassal, L. and Spinnler, H. E., Growth of Penicillium camemberti and Geotrichum candidum in pure and mixed cultures on experimental mold ripened cheese of Camembert-type. Lait, 75, 3-16 (1995).
  32. Moreau, A., Fillon, M., Truong-Meyer, X. M., Pingaud, H. and Strehaiano, P., Study of lactic acid and amino acid catabolism of Brevibacterium linens. Microbiologie, Aliments, Nutrition, 16, 251-258 (1998).
  33. Ramkrishna, D., Kompala, D. S. and Tsao, G. T., Are microbes optimal strategies? Biotechnol. Prog., 3, 121-126 (1987).
  34. Ronne, H., Glucose repression in fungi. Trends Gen., 11, 12-17 (1995).
  35. Trinci, A. P. J., A kinetic study of the growth of Aspergillus nidulans and other fungi. J. Gen. Microbiol., 57, 11-24 (1969).
  36. Wong, T. Y., Pei, H., Bancroft, K. and Childers, G. W., Diauxic growth of Azotobacter vinelandii on galactose and glucose: regulation of glucose transport by another hexose. Appl. Environ. Microbiol., 61, 430-433 (1995).