Development and Optimization of an Enzyme Immunoassay to Detect Serum Antibodies against the Hepatitis E Virus in Pigs, Using Plant-Derived ORF2 Recombinant Protein (original) (raw)

Detection of Serum Antibodies to Hepatitis E Virus Based on HEV Genotype 3 ORF2 Capsid Protein Expressed in Nicotiana benthamiana

Annals of laboratory medicine, 2017

Hepatitis E virus (HEV) causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. There have been recent reports on the zoonotic spread of the virus, and several animal species, primarily pigs, have been recognized as reservoirs of HEV. Because of its possible spread, there is an urgent need of a method for the cost-effective production of HEV proteins that can be used as diagnostic antigens for the serological detection of anti-HEV antibodies. The HEV open reading frame (ORF)2 protein was purified from plant tissue by using immobilized metal-anion chromatography (IMAC). The recombinant protein was used to develop an in-house ELISA for testing anti-HEV antibodies in both human and swine sera. Thirty-six serum samples collected from patients with serologically proven HEV infection with commercial kits were tested for anti-HEV IgG antibodies by using the plant-expressed protein. Forty-five serum samples collected from apparently healthy pigs i...

A Novel Blocking ELISA for Detection of Antibodies against Hepatitis E Virus in Domestic Pigs

PloS one, 2016

Hepatitis E virus (HEV) infects both humans and animals, with an overall human mortality rate generally less than 1%, but as high as 20% among pregnant women. HEV strains fall into 4 major genotypes. Zoonotic genotypes 3 and 4 associate with sporadic human and animal HEV cases in many industrialized countries. To date, collective evidence implicates pigs as the main HEV reservoir, justifying the importance of monitoring HEV infection rates in pig herds to prevent human illness. Due to the lack of a robust in vitro cell culture system for viral propagation, no "gold standard" assay has yet been developed to detect HEV infection in domestic pigs. 1E4, a monoclonal antibody (mAb) specific for the C-terminal 268 amino acids of HEV genotype 4 ORF2 capsid protein (sORF2-C), was generated and conjugated to horseradish peroxidase (HRP) for use in a blocking ELISA (bELISA). Optimal sORF2-C coating antigen concentration (8 μg/ml), HRP-1E4 dilution (1:1000), and test pig serum diluti...

Detection of serum antibodies to hepatitis E virus in domestic pigs in Italy using a recombinant swine HEV capsid protein

BMC veterinary research, 2014

The hepatitis E virus (HEV) has been detected in both humans and animals, particularly pigs, worldwide. Several evidences, including human infection following consumption of raw contaminated meat, suggest a zoonotic transmission of HEV. In Italy, large circulation of genotype 3 HEV has been reported in swine, and recent studies have confirmed the involvement of this genotype in autochthonous human cases. In this study 111 sera collected from healthy pigs in two Italian regions were tested for anti-HEV IgG antibodies. For specific HEV antibody detection in swine, we developed ELISA and Western blotting methods, using a truncated capsid (ORF2) protein lacking the first 111 amino acids of a swine HEV genotype 3 strain. The ORF2-based ELISA revealed anti-HEV antibodies in 104 out of 111 pigs compared with 102 detected with a commercial ELISA kit. A lower number of sera reacted with the recombinant ORF2 protein in a Western blotting format (81/111). Using a Latent class analysis (LCA), t...

Antigenic Characterization of ORF2 and ORF3 Proteins of Hepatitis E Virus (HEV)

Viruses, 2021

To evaluate the antigenic properties of Hepatitis E Virus (HEV) Open Reading Frame 2 and 3 (ORF2 and ORF3) codified proteins, we expressed different portions of ORF2 and the entire ORF3 in E. coli, a truncated ORF2, was also expressed in baculovirus. A panel of 37 monoclonal antibodies (MAbs) was raised against ORF2 (1–660 amino acids) and MAbs were mapped and characterized using the ORF2 expressed portions. Selected HEV positive and negative swine sera were used to evaluate ORF2 and ORF3 antigens’ immunogenicity. The MAbs were clustered in six groups identifying six antigenic regions along the ORF2. Only MAbs binding to the sixth ORF2 antigenic region (394–608 aa) were found to compete with HEV positive sera and efficiently catch the recombinant antigen expressed in baculovirus. The ORF2 portion from 394–608 aa demonstrated to include most immunogenic epitopes with 85% of HEV positive swine sera reacting against the region from 461–544 aa. Only 5% of the selected HEV sera reacted a...

Production and characterization of a Brazilian candidate antigen for Hepatitis E Virus genotype 3 diagnosis

FEMS microbiology letters, 2016

Hepatitis E, caused by hepatitis E virus (HEV), is a viral infectious pathology of great importance in the public health. Hepatitis E outbreaks were registered in developing countries with poor or no sanitation, where drinking water was contaminated with fecal material, but also in many industrialized countries probably due to consumption of HEV-positive swine meat. In this study, we present the development and characterization of a recombinant antigen from ORF2 HEV genotype 3. Viral RNA was extracted from swine feces infected with the native virus. 267 residues from the C-terminal ORF2((394-661)) coding sequence were cloned into the pET20a vector and expressed in Escherichia coli ER2566. Recombinant protein was purified by liquid chromatography and the fragment obtained a 98% homology against other human or swine HEV genotype 3 ORF2 sequences. Wistar rats were inoculated with ORF2p, developing antibodies able to recognize both the homologous antigen and the native HEV genotype 3 OR...

A new enzyme immunoassay for the detection of antibody to hepatitis E virus

Journal of Gastroenterology and Hepatology, 2002

Background and Aim : The purpose of the present study was to develop enzyme immunoassay (EIA) for the detection of IgG anti-hepatitis E virus (HEV) activity using two new recombinant proteins as antigenic targets, and to evaluate these EIA with the aid of statistical methods. Methods : Two proteins, a mosaic protein and pB166 containing region 452-617 aa of the ORF2 of the HEV Burma strain, were used to develop the new HEV EIA. This EIA was evaluated using several panels of serum specimens obtained from: (i) acutely HEV-infected patients; (ii) patients with non-A, non-C hepatitis; (iii) normal blood donors (NBD) from non-endemic countries; and (iv) experimentally infected chimpanzees. Results : A new HEV EIA was developed using two new recombinant proteins. This assay was able to detect anti-HEV activity in all specimens from acutely HEV-infected patients. When NBD were tested, more than 15% of specimens were found to be IgG anti-HEV positive. All NBD anti-HEV-positive specimens were tested with overlapping synthetic peptides spanning the entire HEV ORF2-encoded protein.

In house ELISA based on recombinant ORF2 protein underline high prevalence of IgG anti-hepatitis E virus amongst blood donors in south Brazil

PLOS ONE

Hepatitis E Virus (HEV) is a zoonotic pathogen responsible for causing acute hepatitis in human, especially in developing countries. Diagnosis of HEV usually relies on the detection of antibodies mostly by enzyme-linked immunosorbent assay (ELISA). In the present study, we designed a new indirect ELISA (iELISA) based on a short recombinant peptide derived from the capsid protein (ORF2p) and demonstrated its potential for detecting human IgG against HEV genotype 3. The best polystyrene plate (Maxisorp ®), optimal ORF2p coating antigen concentration (0,67μg/well) and primary antibody dilution (1:100) were determined. This iELISA showed a sensitivity of 91.4% and specificity of 95.9%. The comparison of our in house iELISA with a commercial assay (RecomWell, Mikrogen ®) showed 94.25% of agreement and a kappa index of 0.88. The ORF2 recombinant ELISA was used to screen 780 blood donors for anti-HEV IgG and we found that 314 (40,25%) of these donors were IgG positive. This high prevalence of antibodies suggests, for the first time, that the Southern Brazil region might be endemic to Hepatitis E Virus genotype 3.

Double-Antigen Enzyme-Linked Immunosorbent Assay for Detection of Hepatitis E Virus-Specific Antibodies in Human or Swine Sera

Clinical and Vaccine Immunology, 2008

A new double-antigen sandwich-based enzyme-linked immunosorbent assay (ELISA) for the detection of total antibodies (immunoglobulin G [IgG] and IgM) specific for hepatitis E virus (HEV) was developed by utilizing well-characterized recombinant protein ET2.1 and its peroxidase-labeled counterpart. Our study showed that the ELISA detected all the positive patient samples (n ‫؍‬ 265) regardless of whether they contained IgM or IgG antibodies, or both, while it maintained an excellent specificity of 98.8% with samples from various patient or healthy control groups (total number of samples, 424). The test had a detection limit for anti-HEV IgG antibodies that was equivalent to 62 mIU/ml of the international reference. Compared with the serological status of the specimens determined on the basis of tests performed at the individual collection sites, the testing outcome generated by the new ELISA had a good agreement of 99.3%, with a kappa value of 0.985. The positive predictive value and the negative predictive value for the new test reached 98.1% and 100%, respectively. This ELISA had a positive delta value of 4.836 and a negative delta value of 3.314 (where delta is a measure of the number of standard deviations by which the cutoff is separated from the mean of the sample groups) (N. Crofts, W. Maskill, and I. D. Gust, J. Virol. Methods 22:51-59, 1988), indicating that it had an excellent ability to differentiate the infected and noninfected cohorts. Furthermore, the new design enables the detection of antibodies not only in human samples but also in pig samples. Our preliminary data showed that the ELISA could detect seroconversion in samples from pigs at as early as 14 days postinoculation. The potential utility of detecting specific antibodies in pigs will be an added advantage for managing the disease, with suggested zoonotic implications.

Liver Transudate, a Potential Alternative to Detect Anti-Hepatitis E Virus Antibodies in Pigs and Wild Boars (Sus scrofa)

Microorganisms, 2020

In recent years, cases of hepatitis E virus (HEV) infection have increased in Europe in association with the consumption of contaminated food, mainly from pork products but also from wild boars. The animal’s serum is usually tested for the presence of anti-HEV antibodies and viral RNA but, in many cases such as during hunting, an adequate serum sample cannot be obtained. In the present study, liver transudate was evaluated as an alternative matrix to serum for HEV detection. A total of 125 sera and liver transudates were tested by enzyme-linked immunosorbent assay at different dilutions (1:2, 1:10, 1:20), while 58 samples of serum and liver transudate were checked for the presence of HEV RNA by RT-qPCR. Anti- HEV antibodies were detected by ELISA in 68.0% of the serum samples, and in 61.6% of the undiluted transudate, and in 70.4%, 56.8%, and 44.8% of 1:2, 1:10, or 1:20 diluted transudate, respectively. The best results were obtained for the liver transudate at 1:10 dilution, based on the Kappa statistic (0.630) and intraclass correlation coefficient (0.841). HEV RNA was detected by RT-qPCR in 22.4% of the serum samples and 6.9% of the transudate samples, all samples used for RT-qPCR were positive by ELISA. Our results indicate that liver transudate may be an alternative matrix to serum for the detection of anti-HEV antibodies.