Discussion of “Challenges in operationalizing the water–energy–food nexus” (original) (raw)
Related papers
Water-Energy-Nexus, 2018
The recognition of the interlinked nature of water, energy and food (WEF) resources has resulted in growing momentum to change the approaches for managing these interlinked resources. Initially, models were developed as a mean of integrated methodology for watershed management. Several frameworks and models have been proposed to help policymakers understand the complexity of the nexus and to assist with planning and regulating these resources. Most countries and governments manage these natural resources with different institutions that have their own mission and objectives, and with their own staff, data, measures and tools. This has mostly led to huge variations in terms of methodological approach to design these models, type of data used and eventually results interpretations and policies design. We conducted a review of current literature on the water-energy-food nexus to understand what's known and what's missing and identify key opportunities and challenges facing WEF design and model-ing. Our analysis also identified the followings: Our review reveals that there are a limited number of models and frameworks that address all WEF together and there are even fewer models and frameworks that has diverse methods and transdisci-plinary approaches in analyzing the nexus. It's essential as we design out modeling tools to analyze the nexus to incorporate several dimensions beyond the WEF sectors such as political, social and economic in order to reach nexus thinking and therefore address complexity of the multi-sectoral resources. Agricultural sectors require significant amounts of energy as an input to production, yet few water-energy-food resource planning approaches have incorporated spatial cropping patterns and land use by combining energy and water requirements. Policymakers are provided with an effective way to analyze the nexus on an aggregate level using macro-drivers, but these often omit the complexity of managing the resources at a smaller scale where other factors such as climate and geography have tremendous influence on supply and demand. There are knowledge gaps pertaining the incorporation of spatial-temporal drivers as well as the spatial temporal dynamics of resource availability or accessibility. This is a significant component in the WEF framework design as natural resources are subject to dramatic changes over space and time. There are a considerable number of WEF framework and models that demonstrate promising tools to analyze the nexus but some of these models fall short of capturing interactions among nexus components due to lack of data sharing and availability.
Tracing the Water–Energy–Food Nexus: Description, Theory and Practice
The 'nexus' between water, energy and food (WEF) has gained increasing attention globally in research, business and policy spheres. We review the premise of recent initiatives framed around the nexus, examine the challenge of achieving the type of disciplinary boundary crossing promoted by the nexus agenda and consider how to operationalise what has to date been a largely paper exercise. The WEF nexus has been promoted through international meetings and calls for new research agendas. It is clear from the literature that many aims of nexus approaches pre-date the recent nexus agenda; these have encountered significant barriers to progress, including challenges to cross-disciplinary collaboration, complexity, political economy (often perceived to be under-represented in nexus research) and incompatibility of current institutional structures. Indeed, the ambitious aims of the nexus—the desire to capture multiple interdependencies across three major sectors, across disciplines and across scales—could become its downfall. However, greater recognition of interdependencies across state and non-state actors, more sophisticated modelling systems to assess and quantify WEF linkages and the sheer scale of WEF resource use globally, could create enough momentum to overcome historical barriers and establish nexus approaches as part of a wider repertoire of responses to global environmental change.
Challenges in operationalizing the water–energy–food nexus
Hydrological Sciences Journal, 2017
Concerns about the water-energy-food (WEF) nexus have motivated many discussions regarding new approaches for managing water, energy and food resources. Despite the progress in recent years, there remain many challenges in scientific research on the WEF nexus, while implementation as a management tool is just beginning. The scientific challenges are primarily related to data, information and knowledge gaps in our understanding of the WEF inter-linkages. Our ability to untangle the WEF nexus is also limited by the lack of systematic tools that could address all the trade-offs involved in the nexus. Future research needs to strengthen the pool of information. It is also important to develop integrated software platforms and tools for systematic analysis of the WEF nexus. The experience made in integrated water resources management in the hydrological community, especially in the frame of Panta Rhei, is particularly well suited to take a lead in these advances.
Considering the energy, water and food nexus: Towards an integrated modelling approach
The areas of energy, water and food policy have numerous interwoven concerns ranging from ensuring access to services, to environmental impacts to price volatility. These issues manifest in very different ways in each of the three ''spheres'', but often the impacts are closely related. Identifying these interrelationships a priori is of great importance to help target synergies and avoid potential tensions. Systems thinking is required to address such a wide swath of possible topics. This paper briefly describes some of the linkages at a high-level of aggregation -primarily from a developing country perspective -and via case studies, to arrive at some promising directions for addressing the nexus. To that end, we also present the attributes of a modelling framework that specifically addresses the nexus, and can thus serve to inform more effective national policies and regulations. While environmental issues are normally the 'cohesive principle' from which the three areas are considered jointly, the enormous inequalities arising from a lack of access suggest that economic and security-related issues may be stronger motivators of change. Finally, consideration of the complex interactions will require new institutional capacity both in industrialised and developing countries.
Water-Energy-Food Nexus Tools in Theory and Practice: A Systematic Review
Frontiers in Water
Sector-based resource management approaches partly contribute to the insecurities in water, energy and food sectors and resources. These approaches fail to acknowledge and capture the interlinkages between these connected resources, a key strength in the water-energy-food (WEF) nexus approach. However, the multi-centric, multidimensional, and spatiotemporally dynamic WEF nexus is complex and uncertain, thus requiring dedicated tools that can unpack it. Various sources have blamed the slow uptake and practical implementation of the WEF nexus on the unavailability of appropriate tools and models. To confirm those claims with evidence, literature on WEF nexus tools was searched from Scopus and Web of Science and systematically reviewed using the PRISMA protocol. It was found that the WEF nexus tools are being developed increasingly, with a current cumulative number of at least 46 tools and models. However, their majority (61%) is unreachable to the intended users. Some available tools ...
Water, energy, and food nexus: review of global implementation and simulation model development
Water Policy, 2017
Water, energy, and food (WEF) have complex interconnections. Water is required to produce energy, while energy is needed for water extraction, treatment, and distribution. The food sector requires water and energy to produce food products, while fertilizer and pesticide from farmland have a negative impact on water quality; however, biomass is a potential alternative energy source. Understanding these interconnections will help determine the developmental framework that connects all of the elements. Some global regions have implemented a variety of sustainable management concepts to manage the natural resources, however, mainly for an individual resource. Furthermore, various computer models have been developed to estimate the interdependency of each resource and to quantify future requirements of WEF; the limitations of current models have opened opportunities for development through the addition of components and features such as feedback analysis, optimization, and visualization....
Ten Years of Research on the Water-Energy-Food Nexus: An Analysis of Topics Evolution
Frontiers in water, 2022
This study explores how the concept and research on the water-energy-food (WEF) nexus has evolved over time. The research uncovers the key terms underpinning the phenomenon, maps the interlinkages between WEF nexus topics, and provides an overview of the evolution of the concept of WEF nexus. We analyzed published academic literature from the Scopus database and performed both qualitative and quantitative analyses using Natural Language Processing method. The findings suggest that the nexus approach is increasingly evolving into an integrative concept, and has been incorporating new topics over time, resulting in different methods for WEF nexus research, with a focus on interdisciplinary and inter-sectoral analyses. Through the five periods outlined, we have identified the nexus approach debate focused on the following predominant topics: i) Trend 1 (2012-2016) debates on WEF nexus for water management and natural resource security, ii) Trend 2 (2017-2018) linkages between the nexus, the sustainable development goals and green economy, iii) Trend 3 (2019) WEF nexus governance and policy integration, iv) Trend 4 (2020) application of the nexus concept on different scales, including regions, countries, watersheds, urban areas as well as other components coupled to the WEF nexus, and, v) Trend 5 (2021) climate change and urban nexus challenges.
Quantifying the Water-Energy-Food Nexus: Current Status and Trends
2016
Water, energy, and food are lifelines for modern societies. The continuously rising world population, growing desires for higher living standards, and inextricable links among the three sectors make the water-energy-food (WEF) nexus a vibrant research pursuit. For the integrated delivery of WEF systems, quantifying WEF connections helps understand synergies and trade-offs across the water, energy, and food sectors, and thus is a critical initial step toward integrated WEF nexus modeling and management. However, current WEF interconnection quantifications encounter methodological hurdles. Also, existing calculation results are scattered across a wide collection of studies in multiple disciplines, which increases data collection and interpretation difficulties. To advance robust WEF nexus quantifications and further contribute to integrated WEF systems modeling and management, this study: (i) summarizes the estimate results to date on WEF interconnections; (ii) analyzes methodological and practical challenges associated with WEF interconnection calculations; and (iii) points out opportunities for enabling robust WEF nexus quantifications in the future.
The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment
The water-energy-food (WEF) nexus is rapidly expanding in scholarly literature and policy settings as a novel way to address complex resource and development challenges. The nexus approach aims to identify tradeoffs and synergies of water, energy, and food systems, internalize social and environmental impacts, and guide development of cross-sectoral policies. However, while the WEF nexus offers a promising conceptual approach, the use of WEF nexus methods to systematically evaluate water, energy, and food interlinkages or support development of socially and politically-relevant resource policies has been limited. This paper reviews WEF nexus methods to provide a knowledge base of existing approaches and promote further development of analytical methods that align with nexus thinking. The systematic review of 245 journal articles and book chapters reveals that (a) use of specific and reproducible methods for nexus assessment is uncommon (less than one-third); (b) nexus methods frequently fall short of capturing interactions among water, energy, and food—the very linkages they conceptually purport to address; (c) assessments strongly favor quantitative approaches (nearly three-quarters); (d) use of social science methods is limited (approximately one-quarter); and (e) many nexus methods are confined to disciplinary silos—only about one-quarter combine methods from diverse disciplines and less than one-fifth utilize both quantitative and qualitative approaches. To help overcome these limitations, we derive four key features of nexus analytical tools and methods—innovation, context, collaboration, and implementation—from the literature that reflect WEF nexus thinking. By evaluating existing nexus analytical approaches based on these features, we highlight 18 studies that demonstrate promising advances to guide future research. This paper finds that to address complex resource and development challenges, mixed-methods and transdisciplinary approaches are needed that incorporate social and political dimensions of water, energy, and food; utilize multiple and interdisciplinary approaches; and engage stakeholders and decision-makers.