New Perspectives in Photocatalytic Water Treatment (original) (raw)
Related papers
Ecological Chemistry and Engineering S, 2012
Photocatalysis process belongs to an advanced oxidation technology for the removal of persistent organic compounds and microorganisms from water. It is the technology with a great potential, a low-cost, environmental friendly and sustainable treatment technology to align with the “zero” waste scheme in the water/wastewater industry. At present, the main technical barriers that impede its full commercialization remained on the post-recovery of the catalyst particles after water treatment. This paper reviews the background of the process and photooxidation mechanisms of the organic pollutants and microorganisms. The review of the latest progresses of engineered-photocatalysts, photo-reactor systems, and the kinetics and modeling associated with the photocatalytic and photodisinfection water and wastewater treatment process, has been presented. A number of potential and commercial photocatalytic reactor configurations are discussed, in particular the photocatalytic membrane reactors. T...
Photocatalysis: Past, Present and Future Trends for Remediation of Wastewater
2022
The current paper examines the use of Photocatalysis in various wastewater treatment applications, beginning with a brief overview of how industrialization is causing various water threats and how wastewater treatment processes, particularly Advanced Oxidation Processes (AOPs), have improved in recent years. Then, we go over the current status of photocatalysis in wastewater clean up,as well as the numerous hurdles that are encountered along the way. The applications of photo catalytic technology in waste water treatment are highlighted ,as well as the most recent efforts to improve photocatalytic materials. A brief explaination of photocatalytic reactor design and system evaluation is also included. Finally, the tactics for boosting research outputs and the future prospects of photocatalysis are discussed.
Asian Journal of Chemistry, 2021
Presently water pollution is the one of the major threats faced by living things all over the world. The main cause of water pollution is its effect on the life of aquatic animals. Organic, inorganic, microbial and other pollutants often mix with water bodies mainly due to human activities. Because of the presence of pollutants in water, the amount of dissolved oxygen level can be decreased which in turn affect the survival of aquatic life. The pollutant water may enter the agriculture fields and damage the plants extensively. The methods, such as, coagulation, adsorption, foam floating, electrodialysis, capacitive deionization, etc. are presently employed to treat the waste water. Among these methods, heterogeneous photocatalytic degradation is considered to be a good method because of its low cost and environmental friendliness. In this review, the decontamination of different kinds of organic, inorganic and microbial contaminants in water with different photocatalysts process is ...
Catalysts
In recent decades, ultraviolet-assisted advanced oxidation processes (UV-AOPs) have been successfully applied to remove a wide range of contaminants from polluted water. Despite this, their extended use on an industrial scale is still far from being a reality, largely limited by the operational costs that these processes still entail. In recent years, many researchers have been working to increase UV-AOP efficiency and reduce capital and operating costs. This work aims to review different strategies devoted to the intensification of UV-AOPs. Firstly, the optimization of operational parameters, such as catalyst loading, pH, temperature, or oxidant concentration, has been reviewed as a strategy to augment the efficiency of the photocatalytic processes and reduce reagent consumption and/or treatment time. The review also discusses the development of photocatalytic materials to intensify the UV-AOPs process, and finally, the combination or integration of different UV-AOPs for the treatm...
PHOTOCATALYSIS IN THE TREATMENT
Photocatalysis process belongs to an advanced oxidation technology for the removal of persistent organic compounds and microorganisms from water. It is the technology with a great potential, a low-cost, environmental friendly and sustainable treatment technology to align with the "zero" waste scheme in the water/wastewater industry. At present, the main technical barriers that impede its full commercialization remained on the post-recovery of the catalyst particles after water treatment. This paper reviews the background of the process and photooxidation mechanisms of the organic pollutants and microorganisms. The review of the latest progresses of engineered-photocatalysts, photo-reactor systems, and the kinetics and modeling associated with the photocatalytic and photodisinfection water and wastewater treatment process, has been presented. A number of potential and commercial photocatalytic reactor configurations are discussed, in particular the photocatalytic membrane reactors. The effects of key photo-reactor operation parameters and water quality on the photoprocess performances in terms of the mineralization and disinfection are assessed.
The photocatalytic process in the treatment of polluted water
Chemical Papers
Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO 2-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater.
Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society
Catalysts
Organic pollutants such as dyes, antibiotics, analgesics, herbicides, pesticides, and stimulants become major sources of water pollution. Several treatments such as absorptions, coagulation, filtration, and oxidations were introduced and experimentally carried out to overcome these problems. Nowadays, an advanced technique by photocatalytic degradation attracts the attention of most researchers due to its interesting and promising mechanism that allows spontaneous and non-spontaneous reactions as they utilized light energy to initiate the reaction. However, only a few numbers of photocatalysts reported were able to completely degrade organic pollutants. In the past decade, the number of preparation techniques of photocatalyst such as doping, morphology manipulation, metal loading, and coupling heterojunction were studied and tested. Thus, in this paper, we reviewed details on the fundamentals, common photocatalyst preparation for coupling heterojunction, morphological effect, and ph...