From Diffusion to Reaction via Γ-Convergence (original) (raw)
Abstract
The singular limit is analysed by means of Gamma-convergence in the space of finite Borel measures endowed with the weak-* topology.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (17)
- S. Adams, N. Dirr, M. A. Peletier, and J. Zimmer. Foundation of the Wasserstein gradient-flow formulation of diffusion: A large-deviation approach. In preparation.
- L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in mathematics ETH Zürich. Birkhäuser, 2005.
- R. Aris. Mathematical Modeling: A Chemical Engineer's Perspective. Academic Press, 1999.
- H. Attouch. Variational convergence for functions and operators. Pitman (Advanced Publishing Program), Boston, MA, 1984.
- H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North Holland, 1973.
- H. Brezis. Analyse fonctionelle -Théorie et applications. Collection Mathématiques appliquées pour la maîtrise. Masson, first edition, 1983.
- G. Da Prato and A. Lunardi. On a class of self-adjoint elliptic operators in L 2 spaces with respect to invariant measures. J. Differential Equations, 234(1):54-79, 2007.
- G. Dal Maso. An introduction to Γ-convergence, volume 8 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston, first edition, 1993.
- P. Érdi and J. Tóth. Mathematical Models of Chemical Reactions: Theory and Applica- tions of Deterministic and Stochastic Models. Manchester University Press, 1989.
- J. E. Hutchinson. Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J., 35:45-71, 1986.
- R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker- Planck Equation. SIAM Journal on Mathematical Analysis, 29(1):1-17, 1998.
- H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4):284-304, 1940.
- J. Lions and E. Magenes. Non Homogeneous Boundary Value Problems and Applications, volume I. Springer, New York-Heidelberg, 1972.
- A. Mielke. Energy-drift-diffusion equations with recombination as entropy-gradient sys- tem. In preparation, 2009.
- F. Otto. The geometry of dissipative evolution equations: The porous medium equation. Comm. PDE, 26:101-174, 2001.
- M. Pennacchio, G. Savaré, and P. Colli Franzone. Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal., 37(4):1333-1370 (electronic), 2005.
- J. G. Rešetnjak. The weak convergence of completely additive vector-valued set functions. Sibirsk. Mat. Z., 9:1386-1394, 1968.