Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors (original) (raw)

Systematic analysis of time-series gene expression data on tumor cell-selective apoptotic responses to HDAC inhibitors

Computational and mathematical methods in medicine, 2014

SAHA (suberoylanilide hydroxamic acid or vorinostat) is the first nonselective histone deacetylase (HDAC) inhibitor approved by the US Food and Drug Administration (FDA). SAHA affects histone acetylation in chromatin and a variety of nonhistone substrates, thus influencing many cellular processes. In particularly, SAHA induces selective apoptosis of tumor cells, although the mechanism is not well understood. A series of microarray experiments was recently conducted to investigate tumor cell-selective proapoptotic transcriptional responses induced by SAHA. Based on that gene expression time series, we propose a novel framework for detailed analysis of the mechanism of tumor cell apoptosis selectively induced by SAHA. Our analyses indicated that SAHA selectively disrupted the DNA damage response, cell cycle, p53 expression, and mitochondrial integrity of tumor samples to induce selective tumor cell apoptosis. Our results suggest a possible regulation network. Our research extends the ...

Histone deacetylase inhibitor (HDACI) mechanisms of action: Emerging insights

Pharmacology & Therapeutics, 2014

Initially regarded as "epigenetic modifiers" acting predominantly through chromatin remodeling via histone acetylation, HDACIs, alternatively referred to as lysine deacetylase or simply deacetylase inhibitors, have since been recognized to exert multiple cytotoxic actions in cancer cells, often through acetylation of non-histone proteins. Some well-recognized mechanisms of HDACI lethality include, in addition to relaxation of DNA and de-repression of gene transcription, interference with chaperone protein function, free radical generation, induction of DNA damage, up-regulation of endogenous inhibitors of cell cycle progression, e.g., p21, and promotion of apoptosis. Intriguingly, this class of agents is relatively selective for transformed cells, at least in pre-clinical studies. In recent years, additional mechanisms of action of these agents have been uncovered. For example, HDACIs interfere with multiple DNA repair processes, as well as disrupt cell cycle checkpoints, critical to the maintenance of genomic integrity in the face of diverse genotoxic insults. Despite their pre-clinical potential, the clinical use of HDACIs remains restricted to certain subsets of T-cell lymphoma. Currently, it appears likely that the ultimate role of these agents will lie in rational combinations, only a few of which have been pursued in the clinic to date. This review focuses on relatively recently identified mechanisms of action of HDACIs, with particular emphasis on those that relate to the DNA damage response (DDR), and discusses synergistic strategies combining HDACIs with several novel targeted agents that disrupt the DDR or antagonize anti-apoptotic proteins that could have implications for the future use of HDACIs in patients with cancer.

Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway

Nature medicine, 2004

Histone deacetylases (HDACs) regulate transcription and specific cellular functions, such as tumor suppression by p53, and are frequently altered in cancer 1-4 . Inhibitors of HDACs (HDACIs) possess antitumor activity and are well tolerated, supporting the idea that their use might develop as a specific strategy for cancer treatment. The molecular basis for their selective antitumor activity is, however, unknown. We investigated the effects of HDACIs on leukemias expressing the PML-RAR or AML1-ETO oncoproteins, known to initiate leukemogenesis through deregulation of HDACs. Here we report that: (i) HDACIs induce apoptosis of leukemic blasts, although oncogene expression is not sufficient to confer HDACI sensitivity to normal cells; (ii) apoptosis is p53 independent and depends, both in vitro and in vivo, upon activation of the death receptor pathway (TRAIL and Fas signaling pathways); (iii) TRAIL, DR5, FasL and Fas are upregulated by HDACIs in the leukemic cells, but not in normal hematopoietic progenitors. These results show that sensitivity to HDACIs in leukemias is a property of the fully transformed phenotype and depends on activation of a specific death pathway.

Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines

Molecular cancer therapeutics, 2003

Acetylation of histones in chromatin is one mechanism involved in the regulation of gene transcription and is tightly controlled by the balance of acetyltransferase and deacetylase (HDAC) activities. In cancer, some genes are repressed by the inappropriate recruitment of HDACs, e.g., tumor suppressor genes. To understand the genomic effects of HDAC inhibition on gene transcription we studied the gene expression profiles of T24 bladder and MDA breast carcinoma cells treated with three HDAC inhibitors, suberoylanilide hydroxamic acid, trichostatin A, and MS-27-275. The gene expression profiles of the HDAC inhibitors were generally similar to one another and differed substantially from those produced by structurally related inactive analogues; consequently, the changes in gene expression are mechanism-based. Hierarchical clustering of expression profiles demonstrated a greater similarity between the two hydroxamate-containing inhibitors (suberoylanilide hydroxamic acid and trichostatin...

HDAC family: What are the cancer relevant targets?

Cancer Letters, 2009

Histone deacetylases comprise a family of 18 genes, which are grouped into classes I-IV based on their homology to their respective yeast orthologues. Classes I, II, and IV consist of 11 family members, which are referred to as ''classical" HDACs, whereas the 7 class III members are called sirtuins. Classical HDACs are a promising novel class of anti-cancer drug targets. First HDAC inhibitors have been evaluated in clinical trials and show activity against several cancer diseases. However, these compounds act unselectively against several or all 11 HDAC family members. As a consequence, clinical phase I trials document a wide range of side effects. Therefore, the current challenge in the field is to define the cancer relevant HDAC family member(s) in a given tumor type and to design selective inhibitors, which target cancer cells but leave out normal cells. Knockout of single HDAC family members in mice produces a variety of phenotypes ranging from early embryonic death to viable animals with only discrete alterations, indicating that potential side effects of HDAC inhibitors depend on the selectivity of the compounds. Recently, several studies have shown that certain HDAC family members are aberrantly expressed in several tumors and have non-redundant function in controlling hallmarks of cancer cells. The aim of this review is to discuss individual HDAC family members as drug targets in cancer taking into consideration their function under physiological conditions and their oncogenic potential in malignant disease.

Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells

Nature Medicine, 2004

Chromatin is a dynamic macromolecular structure epigenetically modified to regulate specific gene expression. Altered chromatin function can lead to aberrant expression of growth regulators and may, ultimately, cause cancer. That many human diseases have epigenetic etiology has stimulated the development of 'epigenetic' therapies. Inhibitors of histone deacetylases (HDACIs) induce proliferation arrest, maturation and apoptosis of cancer cells, but not normal cells, in vitro and in vivo, and are currently being tested in clinical trials 1-5 . We investigated the mechanism(s) underlying this tumor selectivity. We report that HDACIs induce, in addition to p21, expression of TRAIL (Apo2L, TNFSF10) by directly activating the TNFSF10 promoter, thereby triggering tumor-selective death signaling in acute myeloid leukemia (AML) cells and the blasts of individuals with AML. RNA interference revealed that the induction of p21, TRAIL and differentiation are separable activities of HDACIs. HDACIs induced proliferation arrest, TRAIL-mediated apoptosis and suppression of AML blast clonogenicity irrespective of French-American-British (FAB) classification status, karyotype and immunophenotype. No apoptosis was seen in normal CD34 + progenitor cells. Our results identify TRAIL as a mediator of the anticancer action of HDACIs.

HDAC1,2 Knock-Out and HDACi Induced Cell Apoptosis in Imatinib-Resistant K562 Cells

International Journal of Molecular Sciences

Since imatinib (Glivec or Gleevec) has been used to target the BCR-ABL fusion protein, chronic myeloid leukemia (CML) has become a manageable chronic disease with long-term survival. However, 15%–20% of CML patients ultimately develop resistance to imatinib and then progress to an accelerated phase and eventually to a blast crisis, limiting treatment options and resulting in a poor survival rate. Thus, we investigated whether histone deacetylase inhibitors (HDACis) could be used as a potential anticancer therapy for imatinib-resistant CML (IR-CML) patients. By applying a noninvasive apoptosis detection sensor (NIADS), we found that panobinostat significantly enhanced cell apoptosis in K562 cells. A further investigation showed that panobinostat induced apoptosis in both K562 and imatinib-resistant K562 (IR-K562) cells mainly via H3 and H4 histone acetylation, whereas panobinostat targeted cancer stem cells (CSCs) in IR-K562 cells. Using CRISPR/Cas9 genomic editing, we found that HDA...

Histone deacetylase (HDAC) encoding gene expression in pancreatic cancer cell lines and cell sensitivity to HDAC inhibitors

Cancer Biology & Therapy, 2008

cancer cells. In the present study, attempts were made for the first time, to explore the level of expression of members of histone deacetylase encoding genes (HDACs) in four pancreatic tumor cell lines: Panc-1, BxPC-3, SOJ-6 and MiaPaCa-2; and two non-related tumor cells: Jurkat and HeLa. Furthermore, we examined the possible relationship between the levels of HDACs expression and the sensitivity/resistance to HDAC inhibitors (TSA, Nicotinamide and Sirtinol).