Differential muscle-driven synaptic remodeling in the neuromuscular junction after denervation (original) (raw)
Related papers
Journal of Biological Chemistry
The lifetime of nicotinic acetylcholine receptors (AChRs) in neuromuscular junctions (NMJs) is increased from <1 day to >1 week during early postnatal development. However, the exact timing of AChR stabilization is not known, and its correlation to the concurrent embryonic to adult AChR channel conversion, NMJ remodeling, and neuromuscular diseases is unclear. Using a novel time lapse in vivo imaging technology we show that replacement of the entire receptor population of an individual NMJ occurs end plate-specifically within hours. This makes it possible to follow directly in live animals changing stabilities of end plate receptors. In three different, genetically modified mouse models we demonstrate that the metabolic half-life values of synaptic AChRs increase from a few hours to several days after postnatal day 6. Developmental stabilization is independent of receptor subtype and apparently regulated by an intrinsic muscle-specific maturation program. Myosin Va, an F-actin-dependent motor protein, is also accumulated synaptically during postnatal development and thus could mediate the stabilization of end plate AChR.
Essential roles of the acetylcholine receptor γ-subunit in neuromuscular synaptic patterning
Development, 2008
Formation of the vertebrate neuromuscular junction (NMJ) takes place in a stereotypic pattern in which nerves terminate at select sarcolemmal sites often localized to the central region of the muscle fibers. Several lines of evidence indicate that the muscle fibers may initiate postsynaptic differentiation independent of the ingrowing nerves. For example, nascent acetylcholine receptors (AChRs) are pre-patterned at select regions of the muscle during the initial stage of neuromuscular synaptogenesis. It is not clear how these pre-patterned AChR clusters are assembled, and to what extent they contribute to pre- and post-synaptic differentiation during development. Here, we show that genetic deletion of the AChR γ-subunit gene in mice leads to an absence of pre-patterned AChR clusters during initial stages of neuromuscular synaptogenesis. The absence of pre-patterned AChR clusters was associated with excessive nerve branching, increased motoneuron survival, as well as aberrant distrib...
Essential roles of the acetylcholine receptor -subunit in neuromuscular synaptic patterning
Development, 2008
Formation of the vertebrate neuromuscular junction (NMJ) takes place in a stereotypic pattern in which nerves terminate at select sarcolemmal sites often localized to the central region of the muscle fibers. Several lines of evidence indicate that the muscle fibers may initiate postsynaptic differentiation independent of the ingrowing nerves. For example, nascent acetylcholine receptors (AChRs) are pre-patterned at select regions of the muscle during the initial stage of neuromuscular synaptogenesis. It is not clear how these pre-patterned AChR clusters are assembled, and to what extent they contribute to pre-and post-synaptic differentiation during development. Here, we show that genetic deletion of the AChR γ-subunit gene in mice leads to an absence of pre-patterned AChR clusters during initial stages of neuromuscular synaptogenesis. The absence of pre-patterned AChR clusters was associated with excessive nerve branching, increased motoneuron survival, as well as aberrant distribution of acetylcholinesterase (AChE) and rapsyn. However, clustering of muscle specific kinase (MuSK) proceeded normally in the γ-null muscles. AChR clusters emerged at later stages owing to the expression of the AChR epsilon-subunit, but these delayed AChR clusters were broadly distributed and appeared at lower level compared with the wild-type muscles. Interestingly, despite the abnormal pattern, synaptic vesicle proteins were progressively accumulated at individual nerve terminals, and neuromuscular synapses were ultimately established in γ-null muscles. These results demonstrate that the γ-subunit is required for the formation of pre-patterned AChR clusters, which in turn play an essential role in determining the subsequent pattern of neuromuscular synaptogenesis.
Maturation and Maintenance of the Neuromuscular Synapse
Neuron, 2000
Dystrophin was identified as the cytoskeletal protein product of the gene mutated in Duchenne and Becker muscular dystrophies . Subsequently, dystrophin was shown to be a major component of a multimolecular membrane-associated complex, the ). The DGC includes dystrophin or its homolog, utrophin; three groups of St. Louis, Missouri 63110 ‡ Howard Hughes Medical Institute transmembrane proteins (dystroglycans [DGs], sarcoglycans, and sarcospan); and two groups of soluble pro-Departments of Physiology and Biophysics and of Neurology teins, the dystrobrevins and syntrophins. The DGC links the cytoskeleton to the extracellular matrix; cytoskeletal University of Iowa College of Medicine Iowa City, Iowa 52242 actin binds to dystrophin, which binds to -DG in the membrane, and the extracellular domain of -DG interacts with ␣-DG, which in turn binds to laminin ␣2 in the basal lamina. This complex is required for muscle stability, Summary as demonstrated by the findings that mutations in dystrophin, laminin ␣2, or any of four sarcoglycan genes all The dystrophin-glycoprotein complex (DGC) links the lead to muscular dystrophies (reviewed by Tinsley et al., cytoskeleton of muscle fibers to their extracellular ma-1994; Straub and Campbell, 1997; Ozawa et al., 1998).
Molecular control of neuromuscular junction development
Journal of Cachexia, Sarcopenia and Muscle, 2011
Skeletal muscle innervation is a multi-step process leading to the neuromuscular junction (NMJ) apparatus formation. The transmission of the signal from nerve to muscle occurs at the NMJ level. The molecular mechanism that orchestrates the organization and functioning of synapses is highly complex, and it has not been completely elucidated so far. Neuromuscular junctions are assembled on the muscle fibers at very precise locations called end plates (EP). Acetylcholine receptor (AChR) clusterization at the end plates is required for an accurate synaptic transmission. This review will focus on some mechanisms responsible for accomplishing the correct distribution of AChRs at the synapses. Re< cent evidences support the concept that a dual trans< criptional control of AChR genes in subsynaptic and extrasynaptic nuclei is crucial for AChR clusterization. Moreover, new players have been discovered in the agrin-MuSK pathway, the master organizer of postsynaptical differentiation. Mutations in this pathway cause neuromuscular congenital disorders. Alterations of the postynaptic apparatus are also present in physiological conditions characterized by skeletal muscle wasting. Indeed, recent evidences demonstrate how NMJ misfunctioning has a crucial role at the onset of age-associated sarcopenia.
The Journal of Cell Biology, 1979
We examined the role of nerve terminals in organizing acetylcholine receptors on regenerating skeletal-muscle fibers. When muscle fibers are damaged, they degenerate and are phagocytized, but their basal lamina sheaths survive. New myofibers form within the original basal lamina sheaths, and they become innervated precisely at the original synaptic sites on the sheaths. After denervating and damaging muscle, we allowed myofibers to regenerate but deliberately prevented reinnervation. The distribution of acetylcholine receptors on regenerating myofibers was determined by histological methods, using [125I] alpha-bungarotoxin or horseradish peroxidase-alpha-bungarotoxin; original synaptic sites on the basal lamina sheaths were marked by cholinesterase stain. By one month after damage to the muscle, the new myofibers have accumulations of acetylcholine receptors that are selectively localized to the original synaptic sites. The density of the receptors at these sites is the same as at n...
Post-synaptic morphology of mouse neuromuscular junctions is linked to muscle fibre type
2020
The neuromuscular junction (NMJ) is the highly specialised peripheral synapse formed between lower motor neuron terminals and muscle fibres. Post-synaptic acetylcholine receptors (AChRs), which are found in high density in the muscle membrane, bind to acetylcholine released into the synaptic cleft of the NMJ, ultimately facilitating the conversion of motor action potentials to muscle contractions. NMJs have been studied for many years as a general model for synapse formation, development and function, and are known to be early sites of pathological changes in many neuromuscular diseases. However, information is limited on the diversity of NMJs in different muscles, whether muscle fibre type impacts NMJ morphology and growth, and the relevance of these parameters to neuropathology. Here, this crucial gap was addressed using a robust and standardised semi-automated workflow called NMJ-morph to quantify features of pre- and post-synaptic NMJ architecture in an unbiased manner. Five who...
Chemico-Biological Interactions, 2005
Acute inhibition of synaptic acetylcholinesterase (AChE) is fatal to normal animals, but AChE-knockout mice (AChE-/-) expressing normal levels of butyrylcholinesterase (BChE) could live to adulthood without AChE expression. The present study was undertaken to determine whether compensatory mechanisms occur in the mutant that allow an effective neuromuscular transmission in the chronic absence of AChE. For this we evaluated neuromuscular transmission and the distribution of nicotinic acetylcholine receptors (nAChRs) and motor nerve terminals on isolated nerve-muscle preparations from AChE-/- mice. AChE-/- hemidiaphragm muscles maintained at 32 degrees C can support muscle twitches, and tetanic contractions during intermittent nerve-stimulation over a wide range of physiological frequencies, even though they develop less force, than age-matched wild-type (AChE+/+) muscles. Tetanic fade in AChE-/- muscles was temperature-sensitive and more marked at 22 degrees C than at 32 degrees C. Inhibition of BChE by tetraisopropylpyrophosphoramide (Iso-OMPA) intensified tetanic fade in AChE-/- muscles, but had no effect on AChE+/+ muscles, suggesting that BChE plays a protective role in nerve terminals. Skeletal muscles from AChE-/- mice adapted to the lack of AChE enzymatic activity by triggering a synaptic remodeling that critically occurred between the second and third week of postnatal development, during synapse elimination. In AChE-/- muscles nAChRs distributed in a smaller and fragmented surface area, that mirrored the branching pattern of motor nerve terminals. These findings indicate that the neuromuscular system exhibits a remarkable plasticity and adaptive responses to the chronic absence of AChE activity that has important consequences for the functioning of the neuromuscular junction.