Causal evidence supporting functional dissociation of verbal and spatial working memory in the human dorsolateral prefrontal cortex (original) (raw)
Abstract
The human dorsolateral prefrontal cortex (dlPFC) is crucial for monitoring and manipulating information in working memory, but whether such contributions are domain-specific remains unsettled. Neuroimaging studies have shown bilateral dlPFC activity associated with working memory independent of the stimulus domain, but the causality of this relationship cannot be inferred. Repetitive transcranial magnetic stimulation (rTMS) has the potential to test whether the left and right dlPFC contribute equally to verbal and spatial domains; however, this is the first study to investigate the interaction of task domain and hemisphere using offline rTMS to temporarily modulate dlPFC activity. In separate sessions, 20 healthy right-handed adults received 1 Hz rTMS to the left dlPFC and right dlPFC, plus the vertex as a control site. The working memory performance was assessed pre-rTMS and post-rTMS using both verbal-'letter' and spatial-'location' versions of the 3-back task. The response times were faster post-rTMS, independent of the task domain or stimulation condition, indicating the influence of practice or other nonspecific effects. For accuracy, rTMS of the right dlPFC, but not the left dlPFC or vertex, led to a transient dissociation, reducing spatial, but increasing verbal accuracy. A post-hoc correlation analysis found no relationship between these changes, indicating that the substrates underlying the verbal and spatial domains are functionally independent. Collapsing across time, there was a trend towards a double dissociation, suggesting a potential laterality in the functional organisation of verbal and spatial working memory. At a minimum, these findings provide human evidence for domain-specific contributions of the dlPFC to working memory and reinforce the potential of rTMS to ameliorate cognition.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (61)
- Abler, B., Walter, H., Wunderlich, A., Grothe, J., Sch€ onfeldt-Lecuona, C., Spitzer, M. & Herwig, U. (2005) Side effects of transcranial magnetic stimulation biased task performance in a cognitive neuroscience study. Brain Topogr., 17, 193-196.
- Baayen, R.H., Davidson, D.J. & Bates, D.M. (2008) Mixed-effects modeling with crossed random effects for subjects and items. J. Mem. Lang., 59, 390-412.
- Baddeley, A. (2000) The episodic buffer: a new component of working mem- ory? Trends Cogn. Sci., 4, 417-423.
- Baddeley, A.D. & Hitch, G. (1974) Working Memory. In Bowed, G.H. (Ed.), The psychology of learning and motivation, vol 8. Advanced in research and theory. Academic Press, New York, pp. 47-89.
- Barbey, A.K., Koenigs, M. & Grafman, J. (2013) Dorsolateral prefrontal con- tributions to human working memory. Cortex, 49, 1195-1205.
- Barr, M.S., Farzan, F., Rusjan, P.M., Chen, R., Fitzgerald, P.B. & Daskalakis, Z.J. (2009) Potentiation of gamma oscillatory activity through repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neu- ropsychopharmacology, 34, 2359-2367.
- Bauer, R.H. & Fuster, J.M. (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J. Comp. Physiol. Psych., 90, 293-302.
- Beam, W., Borckart, J.J., Reeves, S.T. & George, M.S. (2009) An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimul., 2, 50-54.
- Boroojerdi, B., Prager, A., Muellbacher, W. & Cohen, L.G. (2000) Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimu- lation. Neurology, 54, 1529-1531.
- Cohen Kadosh, R., Muggleton, N., Silvanto, J. & Walsh, V. (2010) Double dissociation of format-dependent and number-specific neurons in human parietal cortex. Cereb. Cortex (NY), 1991, 2166-2171.
- Courtney, S.M., Petit, L., Haxby, J.V. & Ungerleider, L.G. (1998) The role of prefrontal cortex in working memory: examining the contents of consciousness. Philos. T. Roy. Soc. B., 353, 1819-1828.
- D'Esposito, M., Detre, J.A., Alsop, D.C., Shin, R.K., Atlas, S. & Grossman, M. (1995) The neural basis of the central executive system of working memory. Nature, 378, 279-281.
- D'Esposito, M., Postle, B.R., Ballard, D. & Lease, J. (1999) Maintenance vs. manipulation of information held in working memory: an event-related fMRI study. Brain Cognition, 41, 66-86.
- Du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkin- gnehun, S., Samson, Y., Zhang, S. & Dubois, B. (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain J. Neurol., 129, 3315-3328.
- Eisenegger, C., Treyer, V., Fehr, E. & Knoch, D. (2008) Time-course of 'off- line' prefrontal rTMS effects -a PET study. NeuroImage, 42, 379-384.
- Eldaief, M.C., Halko, M.A., Buckner, R.L. & Pascual-Leone, A. (2011) Transcranial magnetic stimulation modulates the brain's intrinsic activity in a frequency-dependent manner. Proc. Natl. Acad. Sci. USA, 108, 21229- 21234.
- Feredoes, E., Heinen, K., Weiskopf, N., Ruff, C. & Driver, J. (2011) Causal evidence for frontal involvement in memory target maintenance by poster- ior brain areas during distracter interference of visual working memory. Proc. Natl. Acad. Sci. USA, 108, 17510-17515.
- Fregni, F., Boggio, P.S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., Marcolin, M.A., Rigonatti, S.P., Silva, M.T.A., Paulus, W. & Pasc- ual-Leone, A. (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res., 166, 23- 30.
- Fried, P.J., Elkin-Frankston, S., Rushmore, R.J., Hilgetag, C.C. & Valero- Cabre, A. (2011) Characterization of visual percepts evoked by noninva- sive stimulation of the human posterior parietal cortex. PLoS ONE, 6, e27204.
- Funahashi, S., Bruce, C.J. & Goldman-Rakic, P.S. (1993) Dorsolateral pre- frontal lesions and oculomotor delayed-response performance: evidence for mnemonic 'scotomas'. J. Neurosci., 13, 1479-1497.
- Gazzaniga, M.S., Bogen, J.E. & Sperry, R.W. (1965) Observations on visual perception after disconnexion of the cerebral hemispheres in man. Brain J. Neurol., 88, 221-236.
- Gevins, A. & Cutillo, B. (1993) Spatiotemporal dynamics of component processes in human working memory. Electroen. Clin. Neuro., 87, 128-143.
- Grady, C.L. & Craik, F.I. (2000) Changes in memory processing with age. Curr. Opin. Neurobiol., 10, 224-231.
- Herv e, P.-Y., Crivello, F., Perchey, G., Mazoyer, B. & Tzourio-Mazoyer, N. (2006) Handedness and cerebral anatomical asymmetries in young adult males. NeuroImage, 29, 1066-1079.
- Herwig, U., Satrapi, P. & Sch€ onfeldt-Lecuona, C. (2003) Using the interna- tional 10-20 EEG system for positioning of transcranial magnetic stimula- tion. Brain Topogr., 16, 95-99.
- Keel, J.C., Smith, M.J. & Wassermann, E.M. (2001) A safety screening ques- tionnaire for transcranial magnetic stimulation. Clin. Neurophysiol., 112, 720. Kim, D., Kim, S., Joo, E., Tae, W., Choi, S. & Hong, S. (2007) Cortical localization of scalp electrodes on three-dimensional brain surface using frameless stereotactic image guidance system. Neurol. Asia, 12, 84.
- Klem, G.H., L€ uders, H.O., Jasper, H.H. & Elger, C. (1999) The ten-twenty electrode system of the International Federation. The International Federa- tion of Clinical Neurophysiology. Electroen. Clin. Neuro. Suppl., 52, 3-6.
- Kumar, S., Rao, S.L., Chandramouli, B.A. & Pillai, S. (2013) Reduced con- tribution of executive functions in impaired working memory performance in mild traumatic brain injury patients. Clin. Neurol. Neurosur., 115, 1326-1332.
- Larocque, J.J., Lewis-Peacock, J.A. & Postle, B.R. (2014) Multiple neural states of representation in short-term memory? It's a matter of attention. Front. Hum. Neurosci., 8, 5.
- Lee, T.G. & D'Esposito, M. (2012) The dynamic nature of top-down signals originating from prefrontal cortex: a combined fMRI-TMS study. J. Neuro- sci., 32, 15458-15466.
- Lee, S.-H., Kravitz, D.J. & Baker, C.I. (2013) Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nat. Neurosci., 16, 997-999.
- Lisanby, S.H., Gutman, D., Luber, B., Schroeder, C. & Sackeim, H.A. (2001) Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol. Psychiat., 49, 460-463.
- Loo, C.K., Taylor, J.L., Gandevia, S.C., McDarmont, B.N., Mitchell, P.B. & Sachdev, P.S. (2000) Transcranial magnetic stimulation (TMS) in con- trolled treatment studies: are some 'sham' forms active? Biol. Psychiat., 47, 325-331.
- Machii, K., Cohen, D., Ramos-Estebanez, C. & Pascual-Leone, A. (2006) Safety of rTMS to non-motor cortical areas in healthy participants and patients. Clin. Neurophysiol., 117, 455-471.
- Maeda, F., Keenan, J.P., Tormos, J.M., Topka, H. & Pascual-Leone, A. (2000a) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin. Neurophysiol., 111, 800-805.
- Maeda, F., Keenan, J.P., Tormos, J.M., Topka, H. & Pascual-Leone, A. (2000b) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp. Brain Res., 133, 425-430.
- Mottaghy, F.M., Krause, B.J., Kemna, L.J., T€ opper, R., Tellmann, L., Beu, M., Pascual-Leone, A. & M€ uller-G€ artner, H.W. (2000) Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation. Neurosci. Lett., 280, 167- 170.
- Mottaghy, F.M., Gangitano, M., Sparing, R., Krause, B.J. & Pascual-Leone, A. (2002) Segregation of areas related to visual working memory in the prefrontal cortex revealed by rTMS. Cereb. Cortex (NY), 1991, 369-375.
- Mottaghy, F.M., Gangitano, M., Krause, B.J. & Pascual-Leone, A. (2003a) Chro- nometry of parietal and prefrontal activations in verbal working memory revealed by transcranial magnetic stimulation. NeuroImage, 18, 565-575.
- Mottaghy, F.M., Pascual-Leone, A., Kemna, L.J., T€ opper, R., Herzog, H., M€ uller-G€ artner, H.-W. & Krause, B.J. (2003b) Modulation of a brain- behavior relationship in verbal working memory by rTMS. Brain Res. Cognitive Brain Res., 15, 241-249.
- Muellbacher, W., Ziemann, U., Boroojerdi, B. & Hallett, M. (2000) Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin. Neurophysiol., 111, 1002-1007.
- Mull, B.R. & Seyal, M. (2001) Transcranial magnetic stimulation of left pre- frontal cortex impairs working memory. Clin. Neurophysiol., 112, 1672- 1675.
- Nee, D.E., Brown, J.W., Askren, M.K., Berman, M.G., Demiralp, E., Kra- witz, A. & Jonides, J. (2013) A meta-analysis of executive components of working memory. Cereb. Cortex (NY), 1991, 264-282.
- Owen, A.M., McMillan, K.M., Laird, A.R. & Bullmore, E. (2005) N-back working memory paradigm: a meta-analysis of normative functional neu- roimaging studies. Hum. Brain Mapp., 25, 46-59.
- Pascual-Leone, A., Houser, C.M., Reese, K., Shotland, L.I., Grafman, J., Sato, S., Valls-Sol e, J., Brasil-Neto, J.P., Wassermann, E.M. & Cohen, L.G. (1993) Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroen. Clin. Neuro., 89, 120-130.
- Pascual-Leone, A., Bartres-Faz, D. & Keenan, J.P. (1999) Transcranial mag- netic stimulation: studying the brain-behaviour relationship by induction of 'virtual lesions'. Philos. T. Roy. Soc. B., 354, 1229-1238.
- Postle, B.R., Zarahn, E. & D'Esposito, M. (2000) Using event-related fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks. Brain Res. Brain Res. Protoc., 5, 57-66.
- Postle, B.R., Ferrarelli, F., Hamidi, M., Feredoes, E., Massimini, M., Peter- son, M., Alexander, A. & Tononi, G. (2006) Repetitive transcranial mag- netic stimulation dissociates working memory manipulation from retention functions in the prefrontal, but not posterior parietal, cortex. J. Cognitive Neurosci., 18, 1712-1722.
- Romero, J.R., Anschel, D., Sparing, R., Gangitano, M. & Pascual-Leone, A. (2002) Subthreshold low frequency repetitive transcranial magnetic stimu- lation selectively decreases facilitation in the motor cortex. Clin. Neuro- physiol., 113, 101-107.
- Rossi, S., Hallett, M., Rossini, P.M. & Pascual-Leone, A. (2009) Safety, ethi- cal considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol., 120, 2008-2039.
- Rossini, D., Lucca, A., Magri, L., Malaguti, A., Smeraldi, E., Colombo, C. & Zanardi, R. (2010) A symptom-specific analysis of the effect of high- frequency left or low-frequency right transcranial magnetic stimulation over the dorsolateral prefrontal cortex in major depression. Neuropsychobi- ology, 62, 91-97.
- Sack, A.T., Camprodon, J.A., Pascual-Leone, A. & Goebel, R. (2005) The dynamics of interhemispheric compensatory processes in mental imagery. Science, 308, 702-704.
- Sandrini, M., Rossini, P.M. & Miniussi, C. (2008) Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence. Neuropsychologia, 46, 2056-2063.
- Soto, D., Llewelyn, D. & Silvanto, J. (2012) Distinct causal mechanisms of attentional guidance by working memory and repetition priming in early visual cortex. J. Neurosci., 32, 3447-3452.
- Sreenivasan, K.K., Curtis, C.E. & D'Esposito, M. (2014) Revisiting the role of persistent neural activity during working memory. Trends Cogn. Sci., 18, 82-89.
- Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K.E., Hilton, H.J., Flynn, J., Sackeim, H. & van Heertum, R. (2005) Brain networks associated with cognitive reserve in healthy young and old adults. Cereb. Cortex (NY), 1991, 394-402.
- Ungerleider, L.G. & Mishkin, M. (1982) Two cortical visual systems. In Ingle, D. (Ed.), Analysis of Visual Behavior. MIT Press, Cambridge, MA, USA, pp. 549-586.
- Valero-Cabr e, A., Payne, B.R. & Pascual-Leone, A. (2007) Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp. Brain Res., 176, 603-615.
- Valero-Cabr e, A., Pascual-Leone, A. & Rushmore, R.J. (2008) Cumulative sessions of repetitive transcranial magnetic stimulation (rTMS) build up facilitation to subsequent TMS-mediated behavioural disruptions. Eur. J. Neurosci., 27, 765-774.
- Wagenmakers, E.-J., van der Maas, H.L.J. & Grasman, R.P.P.P. (2007) An EZ-diffusion model for response time and accuracy. Psychon. B. Rev., 14, 3-22.
- Zaehle, T., Sandmann, P., Thorne, J.D., J€ ancke, L. & Herrmann, C.S. (2011) Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysio- logical evidence. BMC Neurosci., 12, 2.