PPAR?-mediated antineoplastic effect of NSAID sulindac on human oral squamous carcinoma cells (original) (raw)

Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines

Biochemical Pharmacology, 1999

We examined the activity of two metabolites of sulindac (a nonsteroidal anti-inflammatory drug), sulindac sulfide and sulindac sulfone (exisulind, Prevatec™), and a novel highly potent analog of exisulind (CP248) on a series of human prostate epithelial cell lines. Marked growth inhibition was seen with the BPH-1, LNCaP, and PC3 cell lines with IC 50 values of about 66 M, 137 M, and 64 nM for sulindac sulfide, exisulind, and CP248, respectively. DNA flow cytometry and 4Ј,6Ј-diamido-2-phenylindole (DAPI) staining indicated that these three compounds also induced apoptosis in all of these cell lines. Similar growth inhibition also was seen with the PrEC normal human prostate epithelial cell line, but these cells were resistant to induction of apoptosis at concentrations up to 300 M, 1 mM, and 750 nM of sulindac sulfide, exisulind, and CP248, respectively. Derivatives of LNCaP cells that stably overexpress bcl-2 remained sensitive to growth inhibition and induction of apoptosis by these compounds. In vitro enzyme assays indicated that despite its high potency in inhibiting growth and inducing apoptosis, CP248, like exisulind, lacked cyclooxygenase (COX-1 and COX-2) inhibitory activity even at concentrations up to 10 mM. Moreover, despite variations of COX-1 and COX-2 expression, the three benign and malignant prostate cell lines showed similar sensitivity to growth inhibition and induction of apoptosis by these three compounds. Therefore, sulindac derivatives can cause growth inhibition and induce apoptosis in human prostate cancer cells by a COX-1 and -2 independent mechanism, and this occurs irrespective of androgen sensitivity or increased expression of bcl-2. These compounds may be useful in the prevention and treatment of human prostate cancer.

Effects of sulindac and its metabolites on growth and apoptosis in human mammary epithelial and breast carcinoma cell lines

Breast Cancer Research and Treatment, 1998

Nonsteriodal anti-inflammatory drugs (NSAIDs) are among the most commonly used medications in the United States and elsewhere, mainly for the treatment of arthritis. The NSAID sulindac causes regression and prevents the recurrence of premalignant colonic polyps in patients with familial adenomatous polyposis and inhibits colon carcinogenesis in rodents. Sulindac and sulindac sulfone, a metabolite of sulindac that lacks cyclooxygenase (cox) inhibitory activity, also inhibit mammary carcinogenesis in rats. To obtain insights into the relevance of these findings to human breast cancer, we examined the mechanism of action of sulindac and its sulfide and sulfone metabolites on the normal human mammary epithelial cell line MCF-10F and the human breast cancer cell line MCF-7. Of the three compounds, the sulfide was the most potent inhibitor of cell growth, although the sulfone and sulfoxide were also active at higher concentrations. Treatment of MCF-10F and MCF-7 cells with 100 µM sulindac sulfide resulted in accumulation of cells in the G1 phase of the cell cycle and induction of apoptosis. Apoptosis occurred within 24 h as determined by the TUNEL assay and DNA laddering was observed at 72 h. The accumulation of cells in G1 was associated with decreased levels of expression of cyclin D1 but no effect was seen on the expression of CDK4 or the immediate early response gene c-jun. Treatment with sulindac sulfide caused a striking induction of the CDK inhibitor p21WAF1 in MCF-10F cells. The MCF-7 cell line expressed a high basal level of p21WAF1 which did not change significantly after drug treatment. The pro-apoptotic gene BAX was not induced in either MCF-10F or MCF-7 cells by sulindac sulfide. Stable overexpression of cyclin D1, which frequently occurs in breast cancers, did not protect mammary epithelial cells from inhibition by the sulfide. These studies suggest that this class of compounds warrants further study with respect to breast cancer prevention and treatment.

Sulindac induces apoptosis and inhibits tumor growth in vivo in head and neck squamous cell carcinoma

… (New York, NY), 2007

Sulindac has antineoplastic effects on various cancer cell lines; consequently, we assessed sulindac's effects on laryngeal squamous cell carcinoma (SCC) cells in vitro and in vivo. In vitro, SCC (HEP-2) cells treated with various cyclooxygenase inhibitors or transfected with constitutively active signal transducer and activator of transcription 3 (Stat3) or survivin vectors were analyzed using Western blot analysis, annexin V assay, and cell proliferation assay. In parallel, nude mice injected subcutaneously with HEP-2 cells were either treated intraperitoneally with sulindac or left untreated, and analyzed for tumor weight, survivin expression, and tyrosine-phosphorylated Stat3 expression. In vitro studies confirmed the selective antiproliferative and proapoptotic effects of sulindac, which also downregulated Stat3 and survivin protein expression. Stat3 or survivin forced expression partially rescued the antiproliferative effects of sulindac. In vivo studies showed significant repression of HEP-2 xenograft growth in sulindactreated mice versus controls, with near-complete resolution at 10 days. Additionally, tumor specimens treated with sulindac showed downregulation of phosphorylated tyrosine-705 Stat3 and survivin expression. Taken together, our data suggest, for the first time, a specific inhibitory effect of sulindac on tumor growth and survivin expression in laryngeal cancer, both in vitro and in vivo, in a Stat3-dependent manner, suggesting a novel therapeutic approach to head and neck cancer.

Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest, and p53 induction

Cancer Research, 1997

Sulindac causes regression of and prevents recurrence of colonic ade nomas in patients with familial adenomatous polyposis. Although cell cycle arrest and apoptosi.shave been proposed, the mechanism of action is poorly understood. In this study, we characterized the growth-inhibitory effects of active metabolites of sulindac in cultured colon adenocarcinoma cells by determining the contribution ofapoptosis and cell cycle arrest and the requirement for cyclooxygenase (COX) inhibition and p53 involve ment and compared the effects of sulindac metabolites with the chemo therapeutic drug, 5-fluorouracil (5-FU). Time course and dose-response experiments demonstrated that increased apoptosis paralleled the growth inhibitory effects of the sulfide and sulfone. A relationship among a series of nonsteroidal anti-inflammatory drugs was observed between potency for growth inhibition and ability to induce apoptosis but not potency to inhibit COX. For example, the sulfone was at least 5000-fold less potent than the sulfide for inhibiting COX but only 6.5-fold less potent for inducing apoptosis. Moreover, the prostaglandin analogue, dimethyl-pros. taglandin E2, failed to reverse the apoptosis.inducing effects of the sulfide. Sulindac metabolites caused G1 cell cycle arrest in proliferating cells but were comparably effective in nonproliferating cells. In contrast, 5-FU treatment was less effective in nonproliferating cells. Combined treatment with sulindac metabolites and 5-FU did not result in an additive apoptotic response. Treatment of cells with 5-FU increased p53 protein levels, whereas sulindac metabolites did not induce expression. Saos-2 cells, which lack p53, responded to sulindac metabolites but not 5-FU. These results show that apoptosis primarily contributes to growth inhibition by sulindac metabolites. The biochemical pathway does not require COX inhibition or p53 inductIon and appears to be fundamentally different from the apoptoticresponseto 5-FU.

Sulindac Enhances the Killing of Cancer Cells Exposed to Oxidative Stress

PLoS ONE, 2009

Background: Sulindac is an FDA-approved non-steroidal anti-inflammatory drug (NSAID) that affects prostaglandin production by inhibiting cyclooxygenases (COX) 1 and 2. Sulindac has also been of interest for more than decade as a chemopreventive for adenomatous colorectal polyps and colon cancer.

Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis

Cancer research, 1995

The nonsteroidal anti-inflammatory drug sulindac is known to inhibit chemical carcinogenesis in rodent models and cause regression of adenomas in patients with adenomatous polyposis coli. Sulindac is a prodrug that is metabolized to a pharmacologically active sulfide derivative that potently inhibits prostaglandin synthesis. Recent studies, however, have shown that a sulfone derivative of sulindac, which essentially lacks prostaglandin synthesis inhibitory activity, also inhibits chemical carcinogenesis, suggesting that reduction of prostaglandin levels is not necessary for the antineoplastic activity of this class of drugs. Both sulindac sulfide and the sulfone inhibit the growth of cultured tumor cells, although the cellular mechanism(s) responsible for the antineoplastic activity of sulindac derivatives is unknown. In this study, we investigated the effects of sulindac sulfide and sulfone on the proliferation, differentiation, and apoptosis of HT-29 human colon carcinoma cells. S...

Antiproliferative effect of sulindac in colonic neoplasia prevention: role of COOH-terminal Src kinase

Molecular Cancer Therapeutics, 2008

Although the nonsteroidal anti-inflammatory drugs (NSAID) protection against colorectal cancer is well established, the molecular mechanisms remain unclear. We show herein that induction of the tumor suppressor gene COOH-terminal Src kinase (Csk) by NSAID is important for their antiproliferative and hence chemopreventive effects. In the azoxymethane-treated rat model of experimental colon carcinogenesis, sulindac treatment markedly induced Csk with a corresponding increase in inhibitory phosphorylation of Src (Tyr 527 ). Sulindac-mediated Csk induction was replicated in the human colorectal cancer cell line HT-29, with a corresponding suppression of both Src kinase activity (63% of vehicle; P < 0.05) and E-cadherin tyrosine phosphorylation (an in vivo Src target). To determine the importance of Csk in NSAID antiproliferative activity, we stably transfected a Cskspecific short hairpin RNA (shRNA) vector into HT-29 cells, thereby blunting the sulindac-mediated Csk induction. These transfectants were significantly less responsive to the antiproliferative effect of sulindac sulfide (suppression of proliferating cell nuclear antigen was 21 F 2.3% in transfectants versus 45 F 4.23% in wildtype cells), with a corresponding mitigation of the sulindac-mediated G 1 -S-phase arrest (S-phase cells 48 F 3.6% versus 14 F 2.8% of vehicle respectively). Importantly, the Csk shRNA cells had a marked decrease in the cyclin-dependent kinase inhibitor p21 cip/waf1 , a critical regulator of G 1 -S-phase progression (49% of wild-type cells). Moreover, although sulindac-mediated induction of p21 cip/waf1 was 113% in wild-type HT-29, this induction was alleviated in the Csk shRNA transfectants (65% induction; P < 0.01). Thus, this is the first demonstration that the antiproliferative activity of NSAID is modulated, at least partly, through the Csk/Src axis.