Epithelial Cell-derived Secreted and Transmembrane 1a (Sectm1a) Signals to Activated Neutrophils During Pneumococcal Pneumonia (original) (raw)

Cell signaling underlying the pathophysiology of pneumonia

American Journal of Physiology-Lung Cellular and Molecular Physiology, 2006

The symposium addressed the burgeoning interest in fundamental mechanisms underlying the onset of pneumonia. Bacteria exploit the lung's innate immune mechanism, resulting in pathophysiological cell signaling. As a consequence inflammation develops, leading to pneumonia. New mechanisms have been identified by which bacteria or bacterial products in the airway induce cross-compartmental signaling that leads to inflammatory consequences. The speakers addressed activation of the transcription factor, NF-κB occurring as a consequence of bacterial interactions with specific receptors, such as the Toll-like receptors and the TNF receptor 1 (Prince), or as a consequence of cytokine induction (Mizgerd). Also considered were mechanisms of bacterial virulence in the clinical setting (Wiener-Kronish) and the role of alveolar-capillary signaling mechanisms in the initiation of lung inflammation.

Lung NF-κB Activation and Neutrophil Recruitment Require IL-1 and TNF Receptor Signaling during Pneumococcal Pneumonia

The Journal of Immunology, 2005

Pulmonary inflammation is an essential component of the host defense against Streptococcus pneumoniae infection of the lungs. The early response cytokines, TNF-α and IL-1, are rapidly induced upon microbial exposure. Mice deficient in all TNF- and IL-1-dependent signaling receptors were used to determine the roles of these cytokines during pneumococcal pneumonia. The deficiency of signaling receptors for TNF and IL-1 decreased bacterial clearance. Neutrophil recruitment to alveolar air spaces was impaired by receptor deficiency, as was pulmonary expression of the neutrophil chemokines KC and MIP-2. Because NF-κB mediates the expression of both chemokines, we assessed NF-κB activation in the lungs. During pneumococcal pneumonia, NF-κB proteins translocate to the nucleus and activate gene expression; these functions were largely abrogated by the deficiency of receptors for TNF-α and IL-1. Thus, the combined deficiency of TNF and IL-1 signaling reduces innate immune responses to S. pne...

Importance of CXC Chemokine Receptor 2 in Alveolar Neutrophil and Exudate Macrophage Recruitment in Response to Pneumococcal Lung Infection

Infection and Immunity, 2010

Sustained neutrophilic infiltration is known to contribute to organ damage, such as acute lung injury. CXC chemokine receptor 2 (CXCR2) is the major receptor regulating inflammatory neutrophil recruitment in acute and chronic inflamed tissues. Whether or not the abundant neutrophil recruitment observed in severe pneumonia is essential for protective immunity against Streptococcus pneumoniae infections is incompletely defined. Here we show that CXCR2 deficiency severely perturbs the recruitment of both neutrophils and exudate macrophages associated with a massive bacterial outgrowth in distal airspaces after infection with S. pneumoniae , resulting in 100% mortality in knockout (KO) mice within 3 days. Moreover, irradiated wild-type mice reconstituted with increasing amounts of CXCR2 KO bone marrow (10, 25, 50, and 75% KO) have correspondingly decreased numbers of both neutrophils and exudate macrophages, which is associated with a stepwise increase in bacterial burden and a reciproc...

Interleukin-1β Regulates CXCL8 Release and Influences Disease Outcome in Response to Streptococcus pneumoniae, Defining Intercellular Cooperation between Pulmonary Epithelial Cells and Macrophages

2012

The success of Streptococcus pneumoniae (the pneumococcus) as a pulmonary pathogen is related to its restriction of innate immune responses by respiratory epithelial cells. The mechanisms used to overcome this restriction are incompletely elucidated. Pulmonary chemokine expression involves complex cellular and molecular networks, involving the pulmonary epithelium, but the specific cellular interactions and the cytokines that control them are incompletely defined. We show that serotype 2 or 4 pneumococci induce only modest levels of CXCL8 expression from epithelial cell lines, even in the absence of polysaccharide capsule. In contrast, co-culture of A549 cells with the macrophage-like THP-1 cell-line, differentiated with Vitamin D, or monocyte-derived macrophages, enhanced CXCL8 release. Supernatants from the THP-1 cell-line prime A549 cells to release CXCL8 at levels similar to co-cultures. IL-1Ra inhibits CXCL8 release from co-cultures and reduces the activity of macrophage-conditioned media, but inhibition of TNFα had only a minimal effect on CXCL8 release. Release of IL-1β but not TNFα was upregulated in co-cultures. IL-1 type 1 receptor knockout C57BL/6 and BALB/c mice confirmed the importance of IL-1 signaling in CXC chemokine expression and neutrophil recruitment in vivo. In fulminant disease increased IL-1 signaling resulted in increased 39 neutrophils in the airway and more invasive disease. These results demonstrate that IL-1 is an important component of the cellular network involving macrophages and epithelial cells, which facilitates CXC chemokine expression and aids neutrophil recruitment during pneumococcal pneumonia. They also highlight a potential clinical role for anti-IL-1 treatment to limit excessive 43 neutrophilic inflammation in the lung.

Interleukin-1 Regulates CXCL8 Release and Influences Disease Outcome in Response to Streptococcus pneumoniae, Defining Intercellular Cooperation between Pulmonary Epithelial Cells and Macrophages

Infection and Immunity, 2012

The success of Streptococcus pneumoniae (the pneumococcus) as a pulmonary pathogen is related to its restriction of innate immune responses by respiratory epithelial cells. The mechanisms used to overcome this restriction are incompletely elucidated. Pulmonary chemokine expression involves complex cellular and molecular networks, involving the pulmonary epithelium, but the specific cellular interactions and the cytokines that control them are incompletely defined. We show that serotype 2 or 4 pneumococci induce only modest levels of CXCL8 expression from epithelial cell lines, even in the absence of a polysaccharide capsule. In contrast, coculture of A549 cells with the macrophage-like THP-1 cell line, differentiated with vitamin D, or monocyte-derived macrophages enhanced CXCL8 release. Supernatants from the THP-1 cell line prime A549 cells to release CXCL8 at levels similar to cocultures.

Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations

Frontiers in Immunology, 2021

Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflamm...

Lung epithelium as a sentinel and effector system in pneumonia--molecular mechanisms of pathogen recognition and signal transduction

Respiratory research, 2006

Pneumonia, a common disease caused by a great diversity of infectious agents is responsible for enormous morbidity and mortality worldwide. The bronchial and lung epithelium comprises a large surface between host and environment and is attacked as a primary target during lung infection. Besides acting as a mechanical barrier, recent evidence suggests that the lung epithelium functions as an important sentinel system against pathogens. Equipped with transmembranous and cytosolic pathogen-sensing pattern recognition receptors the epithelium detects invading pathogens. A complex signalling results in epithelial cell activation, which essentially participates in initiation and orchestration of the subsequent innate and adaptive immune response. In this review we summarize recent progress in research focussing on molecular mechanisms of pathogen detection, host cell signal transduction, and subsequent activation of lung epithelial cells by pathogens and their virulence factors and point ...