The Effect of H2 and H2O on the Oxidation of 304L-Stainless Steel at 600 °C: General Behaviour (Part I) (original) (raw)
The effect of p(H 2 O) and p(H 2) on the oxidation of 304L stainless steel at 600°C has been investigated in the present study. The samples were analysed by means of X-ray diffraction, Auger spectroscopy, and scanning electron microscopy equipped with energy dispersive spectroscopy. The results showed that at fixed p(H 2), the corrosion rate increased considerably with increasing p(H 2 O). At fixed p(H 2 O), the corrosion rate decreased slightly with increasing p(H 2). Duplex oxide scales formed during the exposure in all environments. The outer and inner layer consisted of Fe 3 O 4 and (Fe, Cr) 3 O 4 , respectively. The latter was mainly in the form of internal oxidation. The Cr-rich oxide formation was observed at the initial oxidation process before oxide breakdown. The Auger analysis also suggested the presence of Cr-rich oxide layer just after the breakaway oxidation. The results indicated that the rate-determining step in the corrosion attack is surface controlled or diffusion controlled through an oxide layer with fixed thickness over time.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact