Triolet: a programming system that unifies algorithmic skeleton interfaces for high-performance cluster computing (original) (raw)

2014, Proceedings of the 19th Acm Sigplan Symposium on Principles and Practice of Parallel Programming

Functional algorithmic skeletons promise a high-level programming interface for distributed-memory clusters that free developers from concerns of task decomposition, scheduling, and communication. Unfortunately, prior distributed functional skeleton frameworks do not deliver performance comparable to that achievable in a low-level distributed programming model such as C with MPI and OpenMP, even when used in concert with high-performance array libraries. There are several causes: they do not take advantage of shared memory on each cluster node; they impose a fixed partitioning strategy on input data; and they have limited ability to fuse loops involving skeletons that produce a variable number of outputs per input. We address these shortcomings in the Triolet programming language through a modular library design that separates concerns of parallelism, loop nesting, and data partitioning. We show how Triolet substantially improves the parallel performance of algorithms involving array traversals and nested, variable-size loops over what is achievable in Eden, a distributed variant of Haskell. We further demonstrate how Triolet can substantially simplify parallel programming relative to C with MPI and OpenMP while achieving 23-100% of its performance on a 128-core cluster.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.