Transmembrane activator, calcium modulator, and cyclophilin ligand interactor drives plasma cell differentiation in LPS-activated B cells (original) (raw)
Related papers
To switch or not to switch – the opposing roles of TACI in terminal B cell differentiation
European Journal of Immunology, 2007
The TNF superfamily ligands BAFF and APRIL and their three receptors BAFFR, BCMA, and TACI comprise a network that is critically involved in the development and function of humoral immunity. Failure of this complex system is associated with autoimmune disease, B lymphocyte tumours, and antibody deficiency. While BAFF:BAFFR interactions control peripheral B cell survival and homeostasis, BCMA function seems limited to the survival of long-lived bone marrow plasma cells. The functional activity of the third receptor TACI is, however, ambiguous: while TACI -/mice predominantly develop autoimmunity and lymphoproliferation, TACI deficiency in humans primarily manifests itself as an antibody deficiency syndrome. An article in this issue of the European Journal of Immunology demonstrates a negative regulation via TACI in human B cells by using TACI specific antibodies. B cell proliferation, class switch recombination, and Ig production induced by various stimuli were inhibited via TACI.
Lymphocyte-Activating Factor B Independence and Cooperation with TLR4 Promotes B Cell Maturation
2010
We have previously shown that TLR4 triggering promotes the generation of CD23 + CD93 + transitional T2-like cells in vitro from mouse B cell precursors, suggesting a possible role for this receptor in B cell maturation. In this study, we perform an extensive study of cell surface markers and functional properties of B cells matured in vitro with LPS, comparatively with the well-known B cell maturation factor B lymphocyte-activating factor (BAFF). LPS increased generation of CD23 + transitional B cells in a TLR4-dependent way, upregulating IgD and CD21 and downregulating CD93, without inducing cell proliferation, in a manner essentially equivalent to BAFF. For both BAFF and LPS, functional maturation of the IgM + CD23 + CD93 + cells was confirmed by their higher proliferative response to anti-CD40 plus IL-4 compared with IgM + CD23 neg CD93 + cells. BAFF-R-Fc-mediated neutralization experiments showed that TLR4-induced B cell maturation was independent of BAFF. Distinct from BAFF, maturation by LPS relied on the activation of canonical NF-kB pathway, and the two factors together had complementary effects, leading to higher numbers of IgM + CD23 + CD93 + cells with their simultaneous addition. Importantly, BCR cross-linking abrogated the generation of CD23 + B cells by LPS or BAFF, indicating that signals mimicking central tolerance act on both systems. Addition of cyclosporin A reverted BCR-mediated inhibition, both for BAFF and LPS, suggesting similar regulation of signaling pathways by calcineurin. Finally, LPS-injected mice showed a rapid increase of mature B cells in the bone marrow, suggesting that TLR4 signaling may effectively stimulate B cell maturation in vivo, acting as an accessory stimulus in B cell development, complementary to the BAFF physiological pathway.
The Journal of Immunology, 2014
Immune response to T cell independent type 2 (TI-2) Ags, such as bacterial polysaccharides, is severely impaired in X-linked immunodeficient (XID) mice. In this study, we investigated the involvement of a proliferation-inducing ligand (APRIL) or BAFF and their receptors in the unresponsiveness of XID mouse to TI-2 Ags. We discovered that whereas serum BAFF levels were increased, the expression of the APRIL and BAFF receptor transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) was severely reduced in XID B cells. Moreover, B cells from XID mouse were unable to secrete Igs in response to APRIL or BAFF. In correlation with reduced TACI expression and impaired TACI function, APRIL or BAFF did not activate the classical NF-kB pathway in XID cells. Also correlating with the unaltered expression of BAFF receptor, BAFF stimulation induced the activation of the alternative NF-kB pathway in XID cells. Moreover, activation of MAPK pathway was ablated in APRILstimulated XID cells. Prestimulation of XID B cells with the TLR9 agonist, CpG led to a significant increase in TACI expression and restored TACI-mediated functions. CpG prestimulation also restored TACI-mediated signaling in APRIL-or BAFFstimulated XID B cells. Finally, immunization of XID mouse with the prototype TI-2 Ag NP-Ficoll induced IgG and IgM Abs when CpG was given with NP-Ficoll. Collectively, these results suggest that reduced TACI expression is responsible for the unresponsiveness of XID mouse to TI-2 Ags and BCR activation controls TACI expression.
TLR4 Promotes B Cell Maturation: Independence and Cooperation with B Lymphocyte-Activating Factor
2010
We have previously shown that TLR4 triggering promotes the generation of CD23+CD93+ transitional T2-like cells in vitro from mouse B cell precursors, suggesting a possible role for this receptor in B cell maturation. In this study, we perform an extensive study of cell surface markers and functional properties of B cells matured in vitro with LPS, comparatively with the well-known B cell maturation factor B lymphocyte-activating factor (BAFF). LPS increased generation of CD23+ transitional B cells in a TLR4-dependent way, upregulating IgD and CD21 and downregulating CD93, without inducing cell proliferation, in a manner essentially equivalent to BAFF. For both BAFF and LPS, functional maturation of the IgM+CD23+CD93+ cells was confirmed by their higher proliferative response to anti-CD40 plus IL-4 compared with IgM+CD23negCD93+ cells. BAFF-R-Fc–mediated neutralization experiments showed that TLR4-induced B cell maturation was independent of BAFF. Distinct from BAFF, maturation by LP...
Proceedings of the National Academy of Sciences, 2012
Mutations in TNFRSF13B, better known as transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), contribute to common variable immunodeficiency and autoimmunity in humans. How TACI regulates these two opposing conditions is unclear, however. TACI binds the cytokines BAFF and APRIL, and previous studies using gene KO mice indicated that loss of TACI affected only T-cell-independent antibody responses. Here we demonstrate that Taci −/− mice have expanded populations of T follicular helper (T fh ) and germinal center (GC) B cells in their spleens when immunized with T-cell-dependent antigen. The increased numbers of T fh and GC B cells in Taci −/− mice are largely a result of up-regulation of inducible costimulator (ICOS) ligand on TACI-deficient B cells, given that ablation of one copy of the Icosl allele restores normal levels of T fh and GC B cells in Taci −/− mice. Interestingly, despite the presence of increased T fh and antigenspecific B cells, immunized Taci −/− mice demonstrate defective antigen-specific antibody responses resulting from significantly reduced numbers of antibody-secreting cells (ASCs). This effect is attributed to the failure to down-regulate the proapoptotic molecule BIM in Taci −/− plasma cells. Ablation of BIM could rescue ASC formation in Taci −/− mice, suggesting that TACI is more important for the survival of plasma cells than for the differentiation of these cells. Thus, our data reveal dual roles for TACI in B-cell terminal differentiation. On one hand, TACI modulates ICOS ligand expression and thereby limits the size of T fh and GC B-cell compartments and prevents autoimmunity. On the other hand, it regulates the survival of ASCs and plays an important role in humoral immunity.
APRIL modulates B and T cell immunity
Journal of Clinical Investigation, 2002
The TNF-like ligands APRIL and BLyS are close relatives and share the capacity to bind the receptors TACI and BCMA. BLyS has been shown to play an important role in B cell homeostasis and autoimmunity, but the biological role of APRIL remains less well defined. Analysis of T cells revealed an activation-dependent increase in APRIL mRNA expression. We therefore generated mice expressing APRIL as a transgene in T cells. These mice appeared normal and showed no signs of B cell hyperplasia. Transgenic T cells revealed a greatly enhanced survival in vitro as well as enhanced survival of staphylococcal enterotoxin B-reactive CD4 + T cells in vivo, which both directly correlate with elevated Bcl-2 levels. Analysis of humoral responses to T cell-dependent antigens in the transgenic mice indicated that APRIL affects only IgM but not IgG responses. In contrast, T cell-independent type 2 (TI-2) humoral response was enhanced in APRIL transgenic mice. As TACI was previously reported to be indispensable for TI-2 antibody formation, these results suggest a role for APRIL/TACI interactions in the generation of this response. Taken together, our data indicate that APRIL is involved in the induction and/or maintenance of T and B cell responses.
In Vitro and In Vivo Activation Induces BAFF and APRIL Expression in B Cells
The Journal of Immunology, 2007
B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) play key roles in peripheral B cell survival, maturation, and differentiation. BAFF and APRIL are produced by a variety of cell types such as macrophages/monocytes and dendritic cells. Our analysis shows that BAFF mRNA is also expressed in all B cell subsets isolated from bone marrow, spleen, and peritoneal cavity of BALB/c mice. APRIL expression is restricted to early stages of B cell development in the bone marrow and the peritoneal B1 subset. Stimulation of B2 and B1 cells with LPS or CpG-oligodeoxynucleotides induced MyD88-dependent plasma cell differentiation and intracellular expression of BAFF and APRIL. Furthermore, activation of B cells up-regulated membrane expression of BAFF. The finding that in vitro activation of B cells is inhibited by the antagonist transmembrane activator and calcium modulator ligand interactor Ig, indicates that BAFF and/or APRIL are released into the culture supernatants. I...
The Journal of Immunology, 2008
Capsular polysaccharides of encapsulated bacteria do not induce immune response in newborns and the mechanism for this unresponsiveness is not clear. In adults, transmembrane activator and calcium-modulator and cytophilin ligand interactor (TACI) is a TNFR family member molecule with a pivotal role in Ab responses against polysaccharide vaccines. We investigated the expression and the functions of the TNF family cytokines, B cell-activating factor of the TNF family (BAFF) and a proliferationinducing ligand (APRIL), and their receptors in newborn mice and found that TACI expression on B lymphocytes was dramatically reduced (p < 0.0001) in newborns as compared with adults. More importantly, TACI ligands BAFF or APRIL were unable to induce IgA/IgG/IgM secretion from newborn B lymphocytes. Additionally, TACI expression seems to be important in plasma cell development. Indeed, in contrast to adults, stimulation of newborn B lymphocytes with BAFF or APRIL did not result in up-regulation of CD138 expression. In vitro or in vivo exposure of newborn B lymphocytes to oligodeoxynucleotides (CpG ODN) led to up-regulation of TACI expression on newly formed, follicular, and marginal zone as well as B1 B lymphocyte populations, and rendered them responsive to BAFF-or APRIL-mediated CD138 expression and IgA/IgG secretion. Finally, immunization of newborn BALB/c mice but not TACI knockout mice with CpG ODN containing (4-hydroxy-3-nitrophenyl)acetyl-Ficoll led to development of IgG Abs against (4-hydroxy-3-nitrophenyl)acetyl. These findings demonstrate that low TACI expression may be a critical factor that determines the susceptibility of newborns to infections with encapsulated bacteria and the impaired immunogenicity of polysaccharide vaccines. Finally, CpG ODNs may correct deficient newborn response to polysaccharide vaccines by up-regulating TACI.