Immune Correlates of Non-Necrotic and Necrotic Granulomas in Pulmonary Tuberculosis: A Pilot Study (original) (raw)
Related papers
Lesion-Specific Immune Response in Granulomas of Patients with Pulmonary Tuberculosis: A Pilot Study
PloS one, 2015
The formation and maintenance of granulomas is central to the host response to Mycobacterium tuberculosis (Mtb) infection. It is widely accepted that the lungs of patients with tuberculosis (TB) usually contain multiple infection foci, and that the granulomas evolve and differentiate independently, resulting in considerable heterogeneity. Although gene expression profiles of human blood cells have been proposed as biomarkers of Mtb infection and/or active disease, the immune profiles of discrete lesion types has not been studied extensively. Using histology, immunopathology and genome-wide transcriptome analysis, we explored the immunological profile of human lung TB granulomas. We show that although the different granulomas share core similarities in their immunological/inflammatory characteristics, they also exhibit significant divergence. Despite similar numbers of CD68+ macrophages in the different lesions, the extent of immune reactivity, as determined by the density of CD3+ T ...
Modern Pathology, 2020
The precise nature of the local immune responses in lung tuberculosis (TB) granulomas requires a comprehensive understanding of their environmental complexities. At its most basic level, a granuloma is a compact, organized immune aggregate of macrophages surrounded by myeloid, B and T cells. We established two complementary multiplex immunolabeling panels to simultaneously evaluate the myeloid and lymphocytic contexture of 14 human lung TB granulomas in formalin-fixed paraffin-embedded tissue samples. We observed diverse CD3+ and CD8+ T-cell and CD20+ B lymphocyte compositions of the granuloma immune environment and a relatively homogeneous distribution of all myeloid cells. We also found significant associations between CD8+ T-cell densities and the myeloid marker CD11b and phagocytic cell marker CD68. In addition, significantly more CD68+ macrophages and CD8+ T cells were found in Mycobacterium tuberculosis-infected granulomas, as detected by Ziehl-Neelsen staining. FOXP3 expression was predominately found in a small subset of CD4+ T cells in different granulomas. As the success or failure of each granuloma is determined by the immune response within that granuloma at a local and not a systemic level, we attempted to identify the presence of reactive T cells based on expression of the T-cell activation marker CD137 (4-1BB) and programmed cell death-1 (PD-1). Only a small fraction of the CD4+ and CD8+ T cells expressed PD-1. CD137 expression was found only in a very small fraction of the CD4+ T cells in two granulomas. Our results also showed that multinucleated giant cells showed strong PD-L1 but not CTLA-4 membrane staining. This study offers new insights into the heterogeneity of immune cell infiltration in lung TB granulomas, suggesting that each TB granuloma represents a unique immune environment that might be independently influenced by the local adaptive immune response, bacterial state, and overall host disease status.
Frontiers in Immunology
Tuberculosis (TB) is a worldwide health problem; successful interventions such as vaccines and treatment require a 2better understanding of the immune response to infection with Mycobacterium tuberculosis (Mtb). In many infectious diseases, pathogen-specific T cells that are recruited to infection sites are highly responsive and clear infection. Yet in the case of infection with Mtb, most individuals are unable to clear infection leading to either an asymptomatically controlled latent infection (the majority) or active disease (roughly 5%–10% of infections). The hallmark of Mtb infection is the recruitment of immune cells to lungs leading to development of multiple lung granulomas. Non-human primate models of TB indicate that on average <10% of T cells within granulomas are Mtb-responsive in terms of cytokine production. The reason for this reduced responsiveness is unknown and it may be at the core of why humans typically are unable to clear Mtb infection. There are a number of ...
The immunoregulatory landscape of human tuberculosis granulomas
Nature Immunology, 2022
Tuberculosis (TB) in humans is characterized by formation of immune-rich granulomas in infected tissues, the architecture and composition of which are thought to affect disease outcome. However, our understanding of the spatial relationships that control human granulomas is limited. Here, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) to image 37 proteins in tissues from patients with active TB. We constructed a comprehensive atlas that maps 19 cell subsets across 8 spatial microenvironments. This atlas shows an IFN-γ-depleted microenvironment enriched for TGF-β, regulatory T cells and IDO1+ PD-L1+ myeloid cells. In a further transcriptomic meta-analysis of peripheral blood from patients with TB, immunoregulatory trends mirror those identified by granuloma imaging. Notably, PD-L1 expression is associated with progression to active TB and treatment response. These data indicate that in TB granulomas, there are local spatially coordinated immunoregulatory programs w...
Frontiers in Immunology, 2018
Tuberculosis (TB) has tremendous public health relevance. It most frequently affects the lung and is characterized by the development of unique tissue lesions, termed granulomas. These lesions encompass various immune populations, with macrophages being most extensively investigated. Myeloid derived suppressor cells (MDSCs) have been recently identified in TB patients, both in the circulation and at the site of infection, however their interactions with Mycobacterium tuberculosis (Mtb) and their impact on granulomas remain undefined. We generated human monocytic MDSCs and observed that their suppressive capacities are retained upon Mtb infection. We employed an in vitro granuloma model, which mimics human TB lesions to some extent, with the aim of analyzing the roles of MDSCs within granulomas. MDSCs altered the structure of and affected bacterial containment within granuloma-like structures. These effects were partly controlled through highly abundant secreted IL-10. Compared to macrophages, MDSCs activated primarily the NF-κB and MAPK pathways and the latter largely contributed to the release of IL-10 and replication of bacteria within in vitro generated granulomas. Moreover, MDSCs upregulated PD-L1 and suppressed proliferation of lymphocytes, albeit with negligible effects on Mtb replication. Further comprehensive characterization of MDSCs in TB will contribute to a better understanding of disease pathogenesis and facilitate the design of novel immune-based interventions for this deadly infection.
PLOS Pathogens, 2015
Lung granulomas are the pathologic hallmark of tuberculosis (TB). T cells are a major cellular component of TB lung granulomas and are known to play an important role in containment of Mycobacterium tuberculosis (Mtb) infection. We used cynomolgus macaques, a non-human primate model that recapitulates human TB with clinically active disease, latent infection or early infection, to understand functional characteristics and dynamics of T cells in individual granulomas. We sought to correlate T cell cytokine response and bacterial burden of each granuloma, as well as granuloma and systemic responses in individual animals. Our results support that each granuloma within an individual host is independent with respect to total cell numbers, proportion of T cells, pattern of cytokine response, and bacterial burden. The spectrum of these components overlaps greatly amongst animals with different clinical status, indicating that a diversity of granulomas exists within an individual host. On average only about 8% of T cells from granulomas respond with cytokine production after stimulation with Mtb specific antigens, and few "multi-functional" T cells were observed. However, granulomas were found to be "multi-functional" with respect to the combinations of functional T cells that were identified among lesions from individual animals. Although the responses generally overlapped, sterile granulomas had modestly higher frequencies of T cells making IL-17, TNF and any of T-1 (IFN-γ, IL-2, or TNF) and/or T-17 (IL-17) cytokines than non-sterile granulomas. An inverse correlation was observed between bacterial burden with TNF and T-1/T-17 responses in individual granulomas, and a combinatorial analysis of pair-wise cytokine responses indicated that granulomas with T cells producing both pro-and anti-inflammatory cytokines (e.g. IL-10 and IL-17) were PLOS Pathogens | associated with clearance of Mtb. Preliminary evaluation suggests that systemic responses in the blood do not accurately reflect local T cell responses within granulomas.
Emerging trends in the formation and function of tuberculosis granulomas
Frontiers in immunology, 2012
The granuloma is an elaborated aggregate of immune cells found in non-infectious as well as infectious diseases. It is a hallmark of tuberculosis (TB). Predominantly thought as a host-driven strategy to constrain the bacilli and prevent dissemination, recent discoveries indicate the granuloma can also be modulated into an efficient tool to promote microbial pathogenesis. The aim of future studies will certainly focus on better characterization of the mechanisms driving the modulation of the granuloma functions. Here, we provide unique perspectives from both the innate and adaptive immune system in the formation and the role of the TB granuloma. As macrophages (Mϕs) comprise the bulk of granulomas, we highlight the emerging concept of Mϕ polarization and its potential impact in the microbicide response, and other activities, that may ultimately shape the fate of granulomas. Alternatively, we shed light on the ability of B-cells to influence inflammatory status within the granuloma.
Mucosal immunology, 2017
Protection against Mycobacterium tuberculosis (Mtb) infection requires CD4 T cells to migrate into the lung and interact with infected macrophages. In mice, less-differentiated CXCR3(+) CD4 T cells migrate into the lung and suppress growth of Mtb, whereas CX3CR1(+) terminally differentiated Th1 cells accumulate in the blood vasculature and do not control pulmonary infection. Here we examine CD4 T-cell differentiation and lung homing during primary Mtb infection of rhesus macaques. Mtb-specific CD4 T cells simultaneously appeared in the airways and blood ∼21-28 days post exposure, indicating that recently primed effectors are quickly recruited into the lungs after entering circulation. Mtb-specific CD4 T cells in granulomas display a tissue-parenchymal CXCR3(+)CX3CR1(-)PD-1(hi)CTLA-4(+) phenotype. However, most granuloma CD4 T cells are found within the outer lymphocyte cuff and few localize to the myeloid cell core containing the bacilli. Using the intravascular stain approach, we f...