Discovering symbolic policies with deep reinforcement learning (original) (raw)
Related papers
Creativity of AI: Automatic Symbolic Option Discovery for Facilitating Deep Reinforcement Learning
Proceedings of the AAAI Conference on Artificial Intelligence
Despite of achieving great success in real life, Deep Reinforcement Learning (DRL) is still suffering from three critical issues, which are data efficiency, lack of the interpretability and transferability. Recent research shows that embedding symbolic knowledge into DRL is promising in addressing those challenges. Inspired by this, we introduce a novel deep reinforcement learning framework with symbolic options. This framework features a loop training procedure, which enables guiding the improvement of policy by planning with action models and symbolic options learned from interactive trajectories automatically. The learned symbolic options help doing the dense requirement of expert domain knowledge and provide inherent interpretabiliy of policies. Moreover, the transferability and data efficiency can be further improved by planning with the action models. To validate the effectiveness of this framework, we conduct experiments on two domains, Montezuma's Revenge and Office Worl...
arXiv: Learning, 2021
Discovering the underlying mathematical expressions describing a dataset is a core challenge for artificial intelligence. This is the problem of textitsymbolic\textit{symbolic}textitsymbolic textitregression.\textit{regression.}textitregression. Despite recent advances in training neural networks to solve complex tasks, deep learning approaches to symbolic regression are underexplored. We propose a framework that combines deep learning with symbolic regression via a simple idea: use a large model to search the space of small models. More specifically, we use a recurrent neural network to emit a distribution over tractable mathematical expressions, and employ reinforcement learning to train the network to generate better-fitting expressions. Our algorithm significantly outperforms standard genetic programming-based symbolic regression in its ability to exactly recover symbolic expressions on a series of benchmark problems, both with and without added noise. More broadly, our contributions include a framework that can be applied to optimize ...
Improving exploration in policy gradient search: Application to symbolic optimization
ArXiv, 2021
Many machine learning strategies designed to automate mathematical tasks leverage neural networks to search large combinatorial spaces of mathematical symbols. In contrast to traditional evolutionary approaches, using a neural network at the core of the search allows learning higher-level symbolic patterns, providing an informed direction to guide the search. When no labeled data is available, such networks can still be trained using reinforcement learning. However, we demonstrate that this approach can suffer from an early commitment phenomenon and from initialization bias, both of which limit exploration. We present two exploration methods to tackle these issues, building upon ideas of entropy regularization and distribution initialization. We show that these techniques can improve the performance, increase sample efficiency, and lower the complexity of solutions for the task of symbolic regression.
Deep symbolic regression: Recovering mathematical expressions from data via policy gradients
ArXiv, 2019
Discovering the underlying mathematical expressions describing a dataset is a core challenge for artificial intelligence. This is the problem of symbolic regression. Despite recent advances in training neural networks to solve complex tasks, deep learning approaches to symbolic regression are lacking. We propose a framework that combines deep learning with symbolic regression via a simple idea: use a large model to search the space of small models. More specifically, we use a recurrent neural network to emit a distribution over tractable mathematical expressions, and employ reinforcement learning to train the network to generate better-fitting expressions. Our algorithm significantly outperforms standard genetic programming-based symbolic regression in its ability to exactly recover symbolic expressions on a series of benchmark problems, both with and without added noise. More broadly, our contributions include a framework that can be applied to optimize hierarchical, variable-lengt...
Deep Reactive Policies for Planning in Stochastic Nonlinear Domains
Proceedings of the AAAI Conference on Artificial Intelligence, 2019
Recent advances in applying deep learning to planning have shown that Deep Reactive Policies (DRPs) can be powerful for fast decision-making in complex environments. However, an important limitation of current DRP-based approaches is either the need of optimal planners to be used as ground truth in a supervised learning setting or the sample complexity of high-variance policy gradient estimators, which are particularly troublesome in continuous state-action domains. In order to overcome those limitations, we introduce a framework for training DRPs in continuous stochastic spaces via gradient-based policy search. The general approach is to explicitly encode a parametric policy as a deep neural network, and to formulate the probabilistic planning problem as an optimization task in a stochastic computation graph by exploiting the re-parameterization of the transition probability densities; the optimization is then solved by leveraging gradient descent algorithms that are able to handle...
ArXiv, 2017
Deep Reinforcement Learning (DRL) methods have performed well in an increasing numbering of high-dimensional visual decision making domains. Among all such visual decision making problems, those with discrete action spaces often tend to have underlying compositional structure in the said action space. Such action spaces often contain actions such as go left, go up as well as go diagonally up and left (which is a composition of the former two actions). The representations of control policies in such domains have traditionally been modeled without exploiting this inherent compositional structure in the action spaces. We propose a new learning paradigm, Factored Action space Representations (FAR) wherein we decompose a control policy learned using a Deep Reinforcement Learning Algorithm into independent components, analogous to decomposing a vector in terms of some orthogonal basis vectors. This architectural modification of the control policy representation allows the agent to learn a...