AFM for structure and dynamics of biomembranes (original) (raw)
Related papers
Unraveling lipid/protein interaction in model lipid bilayers by Atomic Force Microscopy
Journal of Molecular Recognition, 2011
The current view of the biological membrane is that in which lipids and proteins mutually interact to accomplish membrane functions. The lateral heterogeneity of the lipid bilayer can induce partitioning of membrane-associated proteins, favoring protein-protein interaction and influence signaling and trafficking. The Atomic Force Microscope allows to study the localization of membrane-associated proteins with respect to the lipid organization at the single molecule level and without the need for fluorescence staining. These features make AFM a technique of choice to study lipid/protein interactions in model systems or native membranes. Here we will review the technical aspects inherent to and the main results obtained by AFM in the study of protein partitioning in lipid domains concentrating in particular on GPI-anchored proteins, lipidated proteins, and transmembrane proteins. Whenever possible, we will also discuss the functional consequences of what has been imaged by Atomic Force Microscopy.
Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling
Methods, 2020
A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.
Use of atomic force microscopy for characterization of model membranes and cells
Periodicum Biologorum, 2023
Background: To provide a fundamental understanding of the potential and use of atomic force microscopy (AFM) in medicine and the life sciences, this work presents a thorough description of imaging and non-imaging atomic force microscopy modes for characterizing model membranes and cells at the nanoscale. Methods: The imaging and non-imaging AFM modes are described with examples in terms of the characterization of topographic, morphological, and nanomechanical sample properties. Results: AFM imaging of supported lipid bilayers (SLBs) revealed the effects of temperature and medium composition on SLB topography in the gel and fluid phases, and on the bilayer thickness. Non-imaging AFM showed the strengthening of the SLB in both phases by the ion binding process. Imaging of neuronal and neuroblastoma cells with and without treatment revealed morphological changes in shape, volume, roughness, and Feret dimension. Non-imaging AFM showed the change in cell elasticity induced by the treatment with H 2 O 2 with and without quercetin and by the treatment with copper and myricetin. The measurements of cells elasticity revealed a reorganization of the cytoskeleton and filament structures. Conclusions: Diverse applications of imaging and non-imaging AFM can provide important information about the underlying processes in biologically relevant systems. AFM, as a complementary technique to other biomedical methods, allows screening and monitoring of physiological changes at the nanoscale.
Biosystems - Investigated by Scanning Probe Microscopy, 2009
Atomic force microscopy (AFM) is a powerful technique which is commonly used to image surfaces at the nanoscale and single-molecule level, as well as to investigate physical properties of the sample surface using a technique known as force spectroscopy. In this chapter, we review our recent research where we used AFM to investigate physical properties of phospholipid monolayers, bilayers, and cell membranes. We describe the experimental procedures for AFM imaging, force measurements, and theoretical models to analyze force spectroscopy data. The data obtained allowed correlations between AFM topography and local adhesion and mechanoelastic properties of supported lipid bilayers in water, supported pulmonary surfactant films in air, and the plasma membrane of epithelial type II cells. Finally, AFM was applied to help elucidate the effect of anesthetics and cholesterol present in the lipid films.
Atomic force microscopy of supported planar membrane bilayers
Biophysical Journal, 1991
Membrane bilayers of dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE) adsorbed to a freshly cleaved mica substrate have been imaged by Atomic Force Microscopy (AFM). The membranes were mounted for imaging by two methods: (a) by dialysis of a detergent solution of the lipid in the presence of the substrate material, and (b) by adsorption of lipid vesicles onto the substrate surface from a vesicle suspension. The images were taken in air, and show lipid bilayers adhering to the surface either in isolated patches or in continuous sheets, depending on the deposition conditions. Epifluorescence light microscopy shows that the lipid is distributed on the substrate surfaces as seen in the AFM images. In some instances, when DPPE was used, whole, unfused vesicles, which were bound to the substrate, could be imaged by the AFM. Such membranes should be capable of acting as natural anchors for imaging membrane proteins by AFM.
Atomic Force Microscopy of Biological Membranes
Biophysical Journal, 2009
Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes.
Probing the Lipid Membrane Dipole Potential by Atomic Force Microscopy
The electrostatic properties of biological membranes can be described by three parameters: the transmembrane potential, the membrane surface potential, and the membrane dipole potential. The first two are well characterized in terms of their magnitudes and biological effects. The dipole potential, however, is not well characterized. Various methods to measure the membrane dipole potential indirectly yield different values, and there is not even agreement on the source of the membrane dipole moment. This ambiguity impedes investigations into the biological effects of the membrane dipole moment, which should be substantial considering the large interfacial fields with which it is associated. Electrostatic analysis of phosphatidylcholine lipid membranes with the atomic force microscope reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipids. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internal membrane dipole potential. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of 1275 mV for supported phosphatidylcholine membranes. This new ability to quantitatively measure the membrane dipole moment in a noninvasive manner with nanometer scale spatial resolution will be useful in identifying the biological effects of the dipole potential.
Imaging Artificial Membranes Using High-Speed Atomic Force Microscopy
Methods in Molecular Biology, 2018
Supported lipid bilayers represent a very attractive way to mimic biological membranes, especially to investigate molecular mechanisms associated with the lateral segregation of membrane components. Observation of these model membranes with high-speed atomic force microscopy (HS-AFM) allows the capture of both topography and dynamics of membrane components, with a spatial resolution in the nanometer range and image capture time of less than 1 s. In this context, we have developed new protocols adapted for HS-AFM to form supported lipid bilayers on small mica disks using the vesicle fusion or Langmuir-Blodgett methods. In this chapter we describe in detail the protocols to fabricate supported artificial bilayers as well as the main guidelines for HS-AFM imaging of such samples.
Model biological membranes, studied by AFM imaging and force manipulation
2007
Striated domain-forming propensities of transmembrane WALP peptides in lipid bilayers of different packing state. 33 CHAPTER 3 The strength of integration of transmembrane α-helical peptides in lipid bilayers as determined by Atomic Force Spectroscopy Appendix: Strength of integration of a model transmembrane peptide in a lipid bilayer as measured by the Biomembrane Force Probe technique. 65 CHAPTER 4 Size and orientation of the Lipid II head group as revealed by AFM imaging CHAPTER 5
AFM imaging of lipid domains in model membranes
TheScientificWorldJournal, 2003
Characterization of the two-dimensional organization of biological membranes is one of the most important issues that remains to be achieved in order to understand their structure-function relationships. According to the current view, biological membranes would be organized in in-plane functional microdomains. At least for one category of them, called rafts, the lateral segregation would be driven by lipid-lipid interactions. Basic questions like the size, the kinetics of formation, or the transbilayer organization of lipid microdomains are still a matter of debate, even in model membranes. Because of its capacity to image structures with a resolution that extends from the molecular to the microscopic level, atomic force microscopy (AFM) is a useful tool for probing the mesoscopic lateral organization of lipid mixtures. This paper reviews AFM studies on lateral lipid domains induced by lipid-lipid interactions in model membranes.