High-Throughput and Language-Agnostic Entity Disambiguation and Linking on User Generated Data (original) (raw)

The Entity Disambiguation and Linking (EDL) task matches entity mentions in text to a unique Knowledge Base (KB) identifier such as a Wikipedia or Freebase id. It plays a critical role in the construction of a high quality information network, and can be further leveraged for a variety of information retrieval and NLP tasks such as text categorization and document tagging. EDL is a complex and challenging problem due to ambiguity of the mentions and real world text being multi-lingual. Moreover, EDL systems need to have high throughput and should be lightweight in order to scale to large datasets and run on off-the-shelf machines. More importantly, these systems need to be able to extract and disambiguate dense annotations from the data in order to enable an Information Retrieval or Extraction task running on the data to be more efficient and accurate. In order to address all these challenges, we present the Lithium EDL system and algorithm - a high-throughput, lightweight, language...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.