A symbolic approach to some identities for Bernoulli–Barnes polynomials (original) (raw)
2015, International Journal of Number Theory
The Bernoulli–Barnes polynomials are defined as a natural multidimensional extension of the classical Bernoulli polynomials. Many of the properties of the Bernoulli polynomials admit extensions to this new family. A specific expression involving the Bernoulli–Barnes polynomials has recently appeared in the context of self-dual sequences. The work presented here provides a proof of this self-duality using the symbolic calculus attached to Bernoulli numbers and polynomials. Several properties of the Bernoulli–Barnes polynomials are established by this procedure.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.