A pr 2 00 6 1 COMPOSITE DARK MATTER AND ITS CHARGED CONSTITUENTS (original) (raw)
Related papers
Composite Dark Matter and its Charged Constituents
2006
Stable charged heavy leptons and quarks can exist and hide in elusive atoms, bound by Coulomb attraction and playing the role of dark matter. However, in the expanding Universe it is not possible to recombine all the charged particles into such atoms, and the positively charged particles, which escape this recombination, bind with electrons in atoms of anomalous isotopes with pregalactic abundance, exceeding substantially the terrestrial upper limits. This abundance can not be reduced in the dense matter bodies, if negatively charged particles have charge -1. Therefore composite dark matter can involve only negatively charged particles with charge -2, while stable heavy particles with charge -1 should be excluded. Realistic scenarios of composite dark matter, avoiding this problem of anomalous isotope over-production, inevitably predict the existence of primordial "atoms", in which primordial helium traps all the free negatively charged heavy constituents with charge -2. S...
Composite dark matter from stable charged constituents
2008
Heavy stable charged particles can exist, hidden from us in bound atomlike states. Models with new stable charged leptons and quarks give rise to realistic composite dark matter scenarios. Significant or even dominant component of O-helium (atomlike system of He4 nucleus and heavy -2 charged particle) is inevitable feature of such scenarios. Possible O-helium explanation for the positron excess in the galactic bulge and for the controversy between the positive results of DAMA and negative results of other experiments is proposed.
10 Years of Dark Atoms of Composite Dark Matter
2015
In 2005 Sheldon Glashow has proposed his sinister model, opening the path to composite-dark-matter scenarios, in which heavy stable electrically charged particles bound in neutral atoms play the role of dark matter candidates. Though the general problem of new stable single charged particles, forming with ordinary electrons anomalous isotopes of hydrogen, turned out to be unresolvable in Glashow's scenario, this scenario stimulated development of composite dark matter models, which can avoid the trouble of anomalous isotope overproduction. In the simplest case composite dark matter may consist of -2 charged particles, bound by ordinary Coulomb interaction with primordial helium in OHe dark matter model. The advantage and open problems of this model are discussed.
Primordial heavy elements in composite dark matter
A widely accepted viewpoint is to consider candidates for cosmological dark matter as neutral and weakly interacting particles, as well as to consider only light elements in the pregalactic chemical composition. It is shown that stable charged leptons and quarks can exist and, hidden in elusive atoms, play the role of dark matter. The inevitable consequence of realistic scenarios with such composite atom-like dark matter is existence of significant or even dominant fraction of "atoms", binding heavy-2 charged particles and 4 He nuclei. Being α particles with shielded electric charge, such atoms catalyse a new path of nuclear transformations in the period of Big Bang Nucleosynthesis, which result in primordial heavy elements. The arguments are given, why such scenario escapes immediate contradiction with observations and challenges search for heavy stable charged particles in cosmic rays and at accelerators.
Primordial heavy elements in composite dark matter models
2007
A widely accepted viewpoint is to consider candidates for cosmological dark matter as neutral and weakly interacting particles, as well as to consider only light elements in the pregalactic chemical composition. It is shown that stable charged leptons and quarks can exist and, hidden in elusive atoms, play the role of dark matter. The inevitable consequence of realistic scenarios with such composite atom-like dark matter is existence of significant or even dominant fraction of "atoms", binding heavy -2 charged particles and He-4 nuclei. Being alpha-particles with shielded electric charge, such atoms catalyse a new path of nuclear transformations in the period of Big Bang Nucleosynthesis, which result in primordial heavy elements. The arguments are given, why such scenario escapes immediate contradiction with observations and challenges search for heavy stable charged particles in cosmic rays and at accelerators.
Dark Atoms of Dark Matter and their Stable Charged Constituents
2011
Direct searches for dark matter lead to serious problems for simple models with stable neutral Weakly Interacting Massive Particles (WIMPs) as candidates for dark matter. A possibility is discussed that new stable quarks and charged leptons exist and are hidden from detection, being bound in neutral dark atoms of composite dark matter. Stable -2 charged particles O−−O^{--}O−− are bound with primordial helium in O-helium (OHe) atoms, being specific nuclear interacting form of composite dark matter. The positive results of DAMA experiments can be explained as annual modulation of radiative capture of O-helium by nuclei. In the framework of this approach test of DAMA results in detectors with other chemical content becomes a nontrivial task, while the experimental search of stable charged particles at LHC or in cosmic rays acquires a meaning of direct test for composite dark matter scenario.
Dark atoms of dark matter from new stable quarks and leptons
2012
The nonbaryonic dark matter of the Universe can consist of new stable charged leptons and quarks, if they are hidden in elusive "dark atoms" of composite dark matter. Such possibility can be compatible with the severe constraints on anomalous isotopes, if there exist stable particles with charge-2 and there are no stable particles with charges +1 and-1. These conditions cannot be realized in supersymmetric models, but can be satisfied in several recently developed alternative scenarios. The excessive-2 charged particles are bound with primordial helium in O-helium "atoms", maintaining specific nuclear-interacting form of the Warmer than Cold Dark Matter. The puzzles of direct dark matter searches appear in this case as a reflection of nontrivial nuclear physics of O-helium.
Dark matter from stable charged particles?
Particle physics candidates for cosmological dark matter are usually considered as neutral and weakly interacting. However stable charged leptons and quarks can also exist and, hidden in elusive atoms, play the role of dark matter. The necessary condition for such scenario is absence of stable particles with charge-1 and effective mechanism for suppression of free positively charged heavy species. These conditions are realized in several recently developed scenarios. In scenario based on Walking Technicolor model excess of stable particles with charge-2 and the corresponding dark matter density is naturally related with the value and sign of cosmological baryon asymmetry. The excessive charged particles are bound with primordial helium in techni-O-helium "atoms", maintaining specific nuclear-interacting form of dark matter. Some properties of techni-O-helium Universe are discussed.
Composite dark matter from the fourth generation
Jetp Lett Engl Tr, 2006
Hypothesis of heavy stable quark of 4th family can provide a nontrivial solution for cosmological dark matter if baryon asymmetry in 4th family has negative sign and the excess of anti-U quarks with charge (-2/3) is generated in early Universe. Excessive anti-U antiquarks form (\bar U \bar U \bar U) antibaryons with electric charge -2, which are all captured by ^4He and trapped in [^4He^{++}(\bar U \bar U \bar U)^{--}] O-helium (OHe) ``atom'', as soon as He-4 is formed in Big Bang Nucleosynthesis. Interaction of O-helium with nuclei opens new path to creation heavy nuclides in Big Bang nucleosynthesis. Due to large mass of U quark, (OHe) ``atomic'' gas decouples from baryonic matter and plays the role of dark matter in large scale structure formation with structures in small scales being suppressed. Owing to nuclear interaction with matter cosmic O-helium from galactic dark matter halo are slowed down in Earth below the thresholds of underground dark matter detectors. However, experimental test of this hypothesis is possible in search for (OHe) in balloon-borne experiments and for UUU hadrons in cosmic rays and accelerators. (OHe) ``atoms'' might form anomalous isotopes and can cause cold nuclear transformations in matter, offering possible way to exclude (or prove?) their existence.