Increased protein level of PEPT1 intestinal H+-peptide cotransporter upregulates absorption of glycylsarcosine and ceftibuten in 5/6 nephrectomized rats (original) (raw)
In chronic renal failure (CRF), dietary protein is one of the factors that deteriorates residual renal functions. Numerous studies have indicated that the products of protein digestion are mainly absorbed as small peptides. However, how small peptides are absorbed in CRF remains poorly understood. H+-coupled peptide transporter (PEPT1/ SLC15A1) plays an important role in the absorption of small peptides and peptide-like drugs in the small intestine. Because dietary protein intake is one of the risk factors for renal failure, the alteration of intestinal PEPT1 might have implications in the progression of renal disease as well as the pharmacokinetics of peptide-like drugs. In this study, we examined the alteration of intestinal PEPT1 in 5/6 nephrectomized (5/6 NR) rats, extensively used as a model of chronic renal failure. Absorption of [14C]glycylsarcosine and ceftibuten was significantly increased in 5/6 NR rats compared with sham-operated rats, without a change in intestinal prote...