Experimental and theoretical study of thermally activated carrier transfer in InAs/GaAs multilayer quantum dots (original) (raw)

2020

Abstract

In this paper, we have investigated the thermally activated carriers transfer mechanism in closely stacked InAs/GaAs quantum dots (QDs) by means of steady-state photoluminescence (PL) and time-resolved photoluminescence measurements. The 10 K PL spectrum exhibits double-emission peaks where the excitation power dependence reveals that these emission peaks are attributed to large and small QD groups. With increasing the sample temperature, an abnormal line-width shrinkage of large QDs (LQDs) is observed. The increase in PL decay lifetime of LQDs versus temperature is nicely explained as the electron and hole wave function overlap between dot layers induced by vertical electronic coupling effect. Using a thermal escape model, the activation energies for PL thermal quenching at high temperatures (above 80K) were derived from fitting the temperature-dependent PL decay lifetime data of LQDs and SQDs. The determined activation energies show that the escape of electron-hole pairs from QDs ...

Larbi Sfaxi hasn't uploaded this paper.

Let Larbi know you want this paper to be uploaded.

Ask for this paper to be uploaded.