Dental Evidence for the Reconstruction of Diet in African Early Homo (original) (raw)
Related papers
Dental microwear and diets of African early Homo
Journal of Human Evolution, 2006
Conventional wisdom ties the origin and early evolution of the genus Homo to environmental changes that occurred near the end of the Pliocene. The basic idea is that changing habitats led to new diets emphasizing savanna resources, such as herd mammals or underground storage organs. Fossil teeth provide the most direct evidence available for evaluating this theory. In this paper, we present a comprehensive study of dental microwear in Plio-Pleistocene Homo from Africa. We examined all available cheek teeth from Ethiopia, Kenya, Tanzania, Malawi, and South Africa and found 18 that preserved antemortem microwear. Microwear features were measured and compared for these specimens and a baseline series of five extant primate species (Cebus apella, Gorilla gorilla, Lophocebus albigena, Pan troglodytes, and Papio ursinus) and two protohistoric human foraging groups (Aleut and Arikara) with documented differences in diet and subsistence strategies. Results confirmed that dental microwear reflects diet, such that hard-object specialists tend to have more large microwear pits, whereas tough food eaters usually have more striations and smaller microwear features. Early Homo specimens clustered with baseline groups that do not prefer fracture resistant foods. Still, Homo erectus and individuals from Swartkrans Member 1 had more small pits than Homo habilis and specimens from Sterkfontein Member 5C. These results suggest that none of the early Homo groups specialized on very hard or tough foods, but that H. erectus and Swartkrans Member 1 individuals ate, at least occasionally, more brittle or tough items than other fossil hominins studied.
Dental evidence for diets of early Homo
2009
The evolution of diet in the earliest members of our genus, Homo rudolfensis, H. habilis and H. erectus has received increased attention over the past few years (see Ungar et al., 2006a for review). Many models have been constructed, based largely on nutritional studies combined with direct analogy (with living peoples or non-human primates) or on contextual evidence, such as archeological and paleoenvi-ronmental indicators.
Archaeology International, 2013
Diet imposes significant constraints on the biology and behaviour of animals. The fossil record suggests that key changes in diet have taken place throughout the course of human evolution. Defining these changes enables us to understand the behaviour of our extinct fossil ancestors. Several lines of evidence are available for studying the diet of early hominins, including craniodental morphology, palaeoecology, dental microwear and stable isotopes. They do, however, often provide conflicting results. Using dental macrowear analysis, this new UCL Institute of Archaeology project will provide an alternative source of information on early hominin diet. Dental macrowear has often been used to analyse diet in archaeological populations, but this will be the first time that this type of detailed study has been applied to the early hominin fossil record.
Testing dietary hypotheses of East African hominines using buccal dental microwear data
Martínez LM, Estebaranz-Sánchez F, Galbany J & Pérez-Pérez A (2016) Testing dietary hypotheses of East African hominines using buccal dental microwear data. PLoS ONE 11(11): e0165447. doi:10.1371/journal.pone.0165447. Abstract There is much debate on the dietary adaptations of the robust hominin lineages during the Pliocene-Pleistocene transition. It has been argued that the shift from C3 to C4 ecosystems in Africa was the main factor responsible for the robust dental and facial anatomical adaptations of Paranthropus taxa, which might be indicative of the consumption of fibrous, abrasive plant foods in open environments. However, occlusal dental microwear data fail to provide evidence of such dietary adaptations and are not consistent with isotopic evidence that supports greater C4 food intake for the robust clades than for the gracile australopithecines. We provide evidence from buccal dental microwear data that supports softer dietary habits than expected for P. aethiopicus and P. boisei based both on masticatory apomorphies and isotopic analyses. On one hand, striation densities on the buccal enamel surfaces of paranthropines teeth are low, resembling those of H. habilis and clearly differing from those observed on H. ergaster, which display higher scratch densities indicative of the consumption of a wide assortment of highly abrasive foodstuffs. Buccal dental microwear patterns are consistent with those previously described for occlusal enamel surfaces, suggesting that Paranthropus consumed much softer diets than previously presumed and thus calling into question a strict interpretation of isotopic evidence. On the other hand, the significantly high buccal scratch densities observed in the H. ergaster specimens are not consistent with a highly specialized, mostly carnivorous diet; instead, they support the consumption of a wide range of highly abrasive food items.
Dental topography and the diet of Homo naledi
Journal of human evolution, 2018
Though late Middle Pleistocene in age, Homo naledi is characterized by a mosaic of Australopithecus-like (e.g., curved fingers, small brains) and Homo-like (e.g., elongated lower limbs) traits, which may suggest it occupied a unique ecological niche. Ecological reconstructions inform on niche occupation, and are particularly successful when using dental material. Tooth shape (via dental topography) and size were quantified for four groups of South African Plio-Pleistocene hominins (specimens of Australopithecus africanus, Paranthropus robustus, H. naledi, and Homo sp.) on relatively unworn Ms to investigate possible ecological differentiation in H. naledi relative to taxa with similar known geographical ranges. H. naledi has smaller, but higher-crowned and more wear resistant teeth than Australopithecus and Paranthropus. These results are found in both lightly and moderately worn teeth. There are no differences in tooth sharpness or complexity. Combined with the high level of dental...
Journal of Anatomy, 2008
This contribution investigates the evolution of diet in the Pan–Homo and hominin clades. It does this by focusing on 12 variables (nine dental and three mandibular) for which data are available about extant chimpanzees, modern humans and most extinct hominins. Previous analyses of this type have approached the interpretation of dental and gnathic function by focusing on the identification of the food consumed (i.e. fruits, leaves, etc.) rather than on the physical properties (i.e. hardness, toughness, etc.) of those foods, and they have not specifically addressed the role that the physical properties of foods play in determining dental adaptations. We take the available evidence for the 12 variables, and set out what the expression of each of those variables is in extant chimpanzees, the earliest hominins, archaic hominins, megadont archaic hominins, and an inclusive grouping made up of transitional hominins and pre-modern Homo. We then present hypotheses about what the states of these variables would be in the last common ancestor of the Pan–Homo clade and in the stem hominin. We review the physical properties of food and suggest how these physical properties can be used to investigate the functional morphology of the dentition. We show what aspects of anterior tooth morphology are critical for food preparation (e.g. peeling fruit) prior to its ingestion, which features of the postcanine dentition (e.g. overall and relative size of the crowns) are related to the reduction in the particle size of food, and how information about the macrostructure (e.g. enamel thickness) and microstructure (e.g. extent and location of enamel prism decussation) of the enamel cap might be used to make predictions about the types of foods consumed by extinct hominins. Specifically, we show how thick enamel can protect against the generation and propagation of cracks in the enamel that begin at the enamel–dentine junction and move towards the outer enamel surface.
Dental microwear and stable isotopes inform the paleoecology of extinct hominins
2012
Determining the diet of an extinct species is paramount in any attempt to reconstruct its paleoecology. Because the distribution and mechanical properties of food items may impact postcranial, cranial, mandibular, and dental morphologies related to their procurement, ingestion, and mastication, these anatomical attributes have been studied intensively. However, while mechanical environments influence skeletal and dental features, it is not clear to what extent they dictate particular morphologies. Although biomechanical explanations have been widely applied to extinct hominins in attempts to retrodict dietary proclivities, morphology may say as much about what they were capable of eating, and perhaps more about phylogenetic history, than about the nature of the diet. Anatomical attributes may establish
Ancient teeth, phenetic affinities, and African hominins: Another look at where Homo naledi fits in
Journal of human evolution, 2018
A new species of Homo, Homo naledi, was described in 2015 based on the hominin skeletal remains from the Dinaledi Chamber of the Rising Star cave system, South Africa. Subsequent craniodental comparative analyses, both phenetic and cladistic, served to support its taxonomic distinctiveness. Here we provide a new quantitative analysis, where up to 78 nonmetric crown and root traits of the permanent dentition were compared among samples of H. naledi (including remains from the recently discovered Lesedi Chamber) and eight other species from Africa: Australopithecus afarensis, Australopithecus africanus, Paranthropus boisei, Paranthropus robustus, Homo habilis, Homo erectus, Middle Pleistocene Homo sp., and Pleistocene and Holocene Homo sapiens. By using the mean measure of divergence distance statistic, phenetic affinities were calculated among samples to evaluate interspecific relatedness. The objective was to compare the results with those previously obtained, to assess further the ...
Palaeodemography and dental microwear pattern of Homo habilis in East Africa
We have studied the variability of the buccal microwear pattern in the Homo habilis population from Olduvai Gorge (Tanzania) and East Rudolf (Kenya), as a dietary indicator in fossil hominin species, and its relationship to the age of the individuals analysed. The estimation of the age of the individuals was done by estimating the rate of dental occlusal wear of individuals of known age. The biodemographic population extinction pattern could be analysed, showing great similarities to that observed in other Paleolithic populations. In the studied sample, the results obtained show that the striation density of the buccal microwear pattern is not significantly correlated with the estimated age at death, despite a tendency towards an increase in the number of striations with age can be observed. Further analyses and greater samples are needed to draw meaningful results.KEYWORDS: Paleodemography – Buccal microwear – Hominins – Homo habilis
Early hominin dental remains from the Plio-Pleistocene site of Drimolen, South Africa
Journal of Human Evolution, 2010
The Plio-Pleistocene fossil hominin site of Drimolen is located approximately 5.5 km north of the other well-known South African Plio-Pleistocene sites (Sterkfontein, Swartkrans, Kromdraai, Coopers). It was discovered by A.W. Keyser in 1992. Systematic excavations led to the recovery of a remarkable number of fossil vertebrate taxa, including hominins. Most of the specimens collected consist of isolated teeth or those in jaws. The aim of this paper is to provide a morphological description of the dental specimens. The taxonomic allocation of each specimen is also reported, either confirming or revising previous provisional attributions. The analysis confirms the occurrence of two hominin species, Paranthropus robustus and Homo sp. With over 80 fossil hominin specimens recovered so far, Drimolen is the second largest sample of P. robustus, after Swartkrans. At Drimolen, P. robustus is represented mostly by craniodental specimens (63) among which are 47 isolated teeth and the remainder are maxillary and mandibular fragments with teeth. The assemblage markedly increases the dental sample of P. robustus. Furthermore, the Drimolen sample includes tooth classes not present in the Swartkrans or Kromdraai samples. The new tooth classes include both deciduous upper lateral incisors (DNH 31) and canines (DNH 23). In the dental sample described here there are nine specimens probably attributable to Homo, although a specific attribution is not yet possible. These specimens expand the small sample of early Homo from South African sites. Basic dimensions (MD and BL) of the Drimolen dental remains are compared in a preliminary analysis with other hominin samples. This analysis delineates the Drimolen P. robustus dental sample as characterized by smaller teeth overall than the Swartkrans sample (and in some cases also smaller than the Kromdraai sample), as well as a greater size range.