Efficient Polyhydroxyalkanoates Production from a Waste-Activated Sludge Alkaline Fermentation Liquid by Activated Sludge Submitted to the Aerobic Feeding and Discharge Process (original) (raw)
Related papers
PHA production by activated sludge
International Journal of Biological Macromolecules, 1999
The production of polyhydroxyalkanoate by anaerobic-aerobic activated sludge was reviewed concentrating on the biochemical mechanisms and on the trials to increase polyhydroxyalkanoate (PHA) content in activated sludge. The anaerobic-aerobic activated sludge system selects microorganisms with the capabilities to couple glycolysis, polyphosphate degradation, and PHA accumulation for anaerobic substrate uptake. Some of the PHA-related metabolisms observed there have not been seen in pure cultures so far. Such metabolisms are the formation of PHA containing 3-hydroxy-2-methylvalerate, and '3-hydroxyvalerate fermentation' in which glucose or glycogen is converted to 3-hydroxyvalerate-rich PHA while yielding energy. The PHA content of activated sludge can be increased up to 62% by applying a microaerophilic-aerobic activated sludge process. PHA production by activated sludge is worth investigation.
2021
Acidogenic fermentation of wastes produces volatile fatty acid (VFA)-rich streams that can be used as low-cost carbon sources for polyhydroxyalkanoate (PHA) production. In this study, an inoculum collected from an anaerobic reactor of a municipal WWTP was conditioned to suppress methanogenic activity. The heat-shock conditioning method of the inoculum proved to be more efficient than acid and alkaline conditioning methods for methanogen inhibition. Then, the pre-conditioned inoculum was used to determine the acidogenic potential of different wastes: three waste activated sludge (WAS) samples generated at different sludge retention times (SRTs, 2, 7 and 14 days), olive mill wastewater (OMW), glycerol, apple pomace (AP) and winterization oil cake (WOC). Batch tests were performed in quintuplicate at 37°C and pH 7. A higher degree of acidification was observed for high-rate activated sludge (2 days of SRT) (69%), followed by olive mill wastewater (OMW) (43%), while the lowest was for g...
Biotechnology for Biofuels
Background: In Europe, almost 87.6 million tonnes of food waste are produced. Despite the high biological value of food waste, traditional management solutions do not consider it as a precious resource. Many studies have reported the use of food waste for the production of high added value molecules. Polyhydroxyalkanoates (PHAs) represent a class of interesting bio-polyesters accumulated by different bacterial cells, and has been proposed for production from the organic fraction of municipal solid waste (OFMSW). Nevertheless, until now, no attention has been paid to the entire biological process leading to the transformation of food waste to organic acids (OA) and then to PHA, getting high PHA yield per food waste unit. In particular, the acid-generating process needs to be optimized, maximizing OA production from OFMSW. To do so, a pilot-scale Anaerobic Percolation Biocell Reactor (100 L in volume) was used to produce an OA-rich percolate from OFMSW which was used subsequently to produce PHA. Results: The optimized acidogenic process resulted in an OA production of 151 g kg −1 from fresh OFMSW. The subsequent optimization of PHA production from OA gave a PHA production, on average, of 223 ± 28 g kg −1 total OA fed. Total mass balance indicated, for the best case studied, a PHA production per OFMSW weight unit of 33.22 ± 4.2 g kg −1 from fresh OFMSW, corresponding to 114.4 ± 14.5 g kg −1 of total solids from OFMSW. PHA composition revealed a hydroxybutyrate/hydroxyvalerate (%) ratio of 53/47 and Mw of 8•10 5 kDa with a low polydispersity index, i.e. 1.4. Conclusions: This work showed how by optimizing acidic fermentation it could be possible to get a large amount of OA from OFMSW to be then transformed into PHA. This step is important as it greatly affects the total final PHA yield. Data obtained in this work can be useful as the starting point for considering the economic feasibility of PHA production from OFMSW by using mixed culture.
Strategies for PHA production by mixed cultures and renewable waste materials
Applied Microbiology and Biotechnology, 2008
Production of polyhydroxyalkanoates (PHA) by mixed cultures has been widely studied in the last decade. Storage of PHA by mixed microbial cultures occurs under transient conditions of carbon or oxygen availability, known respectively as aerobic dynamic feeding and anaerobic/aerobic process. In these processes, PHA-accumulating organisms, which are quite diverse in terms of phenotype, are selected by the dynamic operating conditions imposed to the reactor. The stability of these processes during long-time operation and the similarity of the polymer physical/chemical properties to the one produced by pure cultures were demonstrated. This process could be implemented at industrial scale, providing that some technological aspects are solved. This review summarizes the relevant research carried out with mixed cultures for PHA production, with main focus on the use of wastes or industrial surplus as feedstocks. Basic concepts, regarding the metabolism and microbiology, and technological approaches, with emphasis on the kind of feedstock and reactor operating conditions for culture selection and PHA accumulation, are described. Challenges for the process optimization are also discussed.
Water, 2021
The use of polyhydroxyalkanoates (PHA) as slow-release electron donors for environmental remediation represents a novel and appealing application that is attracting considerable attention in the scientific community. In this context, here, the fermentation pattern of different types of PHA-based materials has been investigated in batch and continuous-flow experiments. Along with commercially available materials, produced from axenic microbial cultures, PHA produced at pilot scale by mixed microbial cultures (MMC) using waste feedstock have been also tested. As a main finding, a rapid onset of volatile fatty acids (VFA) production was observed with a low-purity MMC-deriving material, consisting of microbial cells containing 56% (on weight basis) of intracellular PHA. Indeed, with this material a sustained, long-term production of organic acids (i.e., acetic, propionic, and butyric acids) was observed. In addition, the obtained yield of conversion into acids (up to 70% gVFA/gPHA) was ...
Water Research, 2010
In Polyhydroxyalkanoate (PHA) production processes using Mixed Microbial Culture (MMC), the success of the culture selection step determines, to a great extent, the PHA accumulation performance obtained in the final PHA production stage. In this study, the effect of the influent substrate concentration (30e60 Cmmol VFA/L) on the selection of a PHAstoring culture using a complex feedstock, fermented sugar molasses, was assessed. At 30 and 45 Cmmol VFA/L, substrate concentration impacted on the process kinetics through a substrate dependent kinetic limitation effect. However, further increasing the carbon substrate concentration to 60 Cmmol VFA/L, resulted in an unforeseen growth limitation effect associated with a micronutrient deficiency of the fermented feedstock (magnesium) and high operating pH. Struvite precipitation caused a nutrient limitation which prevented biomass concentration increase, thus causing the feast to famine length ratio to vary in the selection reactor, with subsequent impact on the selective pressure for PHA-storing organisms. A highly dynamic response of the selected population to transient conditions of feast to famine ratio, in the range of 0.21e1.1, was observed. Kinetic (limiting concentration of carbon source) and physiological (loss of internal growth limitation due to the shorter length of famine phase) effects, resulting from variation of the influent substrate concentration, were subsequently demonstrated in batch studies. The culture selected at an influent substrate concentration of 45 Cmmol VFA/L showed the best PHA-storing capacity since neither substrate concentration nor feast to famine ratio were limiting factors. This culture, highly enriched in PHA-storing organisms (88%), reached a maximum PHA content of 74.6%.
Water
Sludge from municipal wastewater treatment systems can be used as a source of mixed microbial cultures for the production of polyhydroxyalkanoates (PHA). Stored intracellularly, the PHA is accumulated by some species of bacteria as energy stockpile and can be extracted from the cells by reflux extraction. Dimethyl carbonate was tested as a solvent for the PHA extraction at different extraction times and biomass to solvent ratios, and 1-butanol was tested for purifying the obtained PHA at different purification times and PHA to solvent ratios. Overall, only a very small difference was observed in the different extraction scenarios. An average extraction amount of 30.7 ± 1.6 g of PHA per 100 g of biomass was achieved. After purification with 1-butanol, a visual difference was observed in the PHA between the tested scenarios, although the actual purity of the resulting samples did not present a significant difference. The overall purity increased from 91.2 ± 0.1% to 98.0 ± 0.1%.
Journal of Environmental Sciences, 2018
The production of polyhydroxyalkanoates (PHA) from wastewaters using microbial mixed cultures (MMC) has been attracting increased interest because of PHA's biodegradability characteristics. Production of PHA by an MMC enriched with PHA-accumulating bacteria was compared using anaerobically treated and acidified brewery wastewaters under various feeding strategies, namely pulse and batch feed addition. To obtain an enriched MMC, a sequencing batch reactor was inoculated with activated sludge fed with acetate and subjected to aerobic dynamic feeding. The enriched MMC was able to accumulate PHA up to 72.6% of cell dry weight (CDW) with pulse addition of acetate controlled by the dissolved oxygen (DO) concentration in the reactor. In a batch accumulation experiment with acetate, the PHA content achieved (28.5% CDW) was less than that of the pulse feeding strategy with the same amount of acetate (~2000 mg C/L). Using anaerobically treated and acidified brewery wastewater fed in pulses, the maximum PHA accumulated by the enriched MMC was similar for both wastewaters (45% CDW), in spite of the higher volatile fatty acid concentration in acidified brewery wastewater. The pulse feed addition controlled by the DO concentration was difficult to implement for wastewater as compared to acetate because the difference in DO concentration between substrate availability and depletion was low. For the batch addition of acidified wastewater, a slightly lower PHA content (39% CDW) was obtained. These results show that both brewery wastewaters can be utilized for PHA production with a similar maximum PHA storage capacity.
DESALINATION AND WATER TREATMENT, 2021
In this study, the optimization of polyhydroxyalkanoates (PHA) production using acidified dairy wastewater (DW) and organic food waste (OFW) as a substrate source was investigated. The study included (a) acclimation of activated sludge in two sequencing batch reactors operated under different operational conditions (feast-famine and anaerobic-aerobic-anoxic) and fed with domestic wastewater only and with volatile fatty acid (VFA) supplement, (b) acidification experiments designed for the initial substrate to inoculum (S/I) ratios of 1, 2.5, 5 and 10 g tCOD/g VSS (tCODtotal chemical oxygen demand and VSS-volatile suspended solids) using DW and OFW, (c) batch experiments for PHA production using each acidified substrate source. The maximum acidification yields were obtained at the S/I ratio of 10 as 51.7% and 46.6% for DW and OFW at 4 th d. PHA contents of up to 67.3% and 4.5% of dry cell weight were obtained using VFA obtained from acidification of DW and OFW, respectively. Accordingly, the results showed that acidification of 1000 m 3 of DW and one tone of the wet weight of OFW could produce 173 and 20.3 kg of polymer, respectively. This could be attributed to a significant profit when a large amount of DW and OFW is considered.