Staphylococcus epidermidis Polysaccharide Intercellular Adhesin Production Significantly Increases during Tricarboxylic Acid Cycle Stress (original) (raw)

Tricarboxylic Acid Cycle-Dependent Regulation of Staphylococcus epidermidis Polysaccharide Intercellular Adhesin Synthesis

Journal of Bacteriology, 2008

Staphylococcus epidermidis is a major nosocomial pathogen primarily infecting immunocompromised individuals or those with implanted biomaterials (e.g., catheters). Biomaterial-associated infections often involve the formation of a biofilm on the surface of the medical device. In S. epidermidis, polysaccharide intercellular adhesin (PIA) is an important mediator of biofilm formation and pathogenesis. Synthesis of PIA is regulated by at least three DNA binding proteins (IcaR, SarA, and B ) and several environmental and nutritional conditions. Previously, we observed the environmental conditions that increased PIA synthesis decreased tricarboxylic acid (TCA) cycle activity. In this study, S. epidermidis TCA cycle mutants were constructed, and the function of central metabolism in PIA biosynthesis was examined. TCA cycle inactivation altered the metabolic status of S. epidermidis, resulting in a massive derepression of PIA biosynthetic genes and a redirection of carbon from growth into PIA biosynthesis. These data demonstrate that the bacterial metabolic status is a critical regulatory determinant of PIA synthesis. In addition, these data lead us to propose that the TCA cycle acts as a signal transduction pathway to translate external environmental cues into intracellular metabolic signals that modulate the activity of transcriptional regulators.

A Dysfunctional Tricarboxylic Acid Cycle Enhances Fitness of Staphylococcus epidermidis During -Lactam Stress

mBio, 2013

Inactivation of the Staphylococcus aureus tricarboxylic acid (TCA) cycle delays the resolution of cutaneous ulcers in a mouse soft tissue infection model. In this study, it was observed that cutaneous lesions in mice infected with wild-type or isogenic aconitase mutant S. aureus strains contained comparable inflammatory infiltrates, suggesting the delayed resolution was independent of the recruitment of immune cells. These observations led us to hypothesize that staphylococcal metabolism can modulate the host immune response. Using an in vitro model system involving RAW 264.7 cells, the authors observed that cells cultured with S. aureus aconitase mutant strains produced significantly lower amounts of nitric oxide (NO • ) and an inducible nitric oxide synthase as compared to those cells exposed to wild-type bacteria. Despite the decrease in NO • synthesis, the expression of antigen-presentation and costimulatory molecules was similar in cells cultured with wild-type and those cultured with aconitase mutant bacteria. The data suggest that staphylococci can evade innate immune responses and potentially enhance their ability to survive in infected hosts by altering their metabolism. This may also explain the occurrence of TCA cycle mutants in clinical S. aureus isolates.

A Dysfunctional Tricarboxylic Acid Cycle Enhances Fitness of Staphylococcus epidermidis During β-Lactam Stress

mBio, 2013

A recent controversial hypothesis suggested that the bactericidal action of antibiotics is due to the generation of endogenous reactive oxygen species (ROS), a process requiring the citric acid cycle (tricarboxylic acid [TCA] cycle). To test this hypothesis, we assessed the ability of oxacillin to induce ROS production and cell death in Staphylococcus epidermidis strain 1457 and an isogenic citric acid cycle mutant. Our results confirm a contributory role for TCA-dependent ROS in enhancing susceptibility of S. epidermidis toward β-lactam antibiotics and also revealed a propensity for clinical isolates to accumulate TCA cycle dysfunctions presumably as a way to tolerate these antibiotics. The increased protection from β-lactam antibiotics could result from pleiotropic effects of a dysfunctional TCA cycle, including increased resistance to oxidative stress, reduced susceptibility to autolysis, and a more positively charged cell surface. IMPORTANCE Staphylococcus epidermidis , a normal...

CcpA coordinates central metabolism and biofilm formation in Staphylococcus epidermidis

Microbiology, 2011

Staphylococcus epidermidis is an opportunistic bacterium whose infections often involve the formation of a biofilm on implanted biomaterials. In S. epidermidis, the exopolysaccharide facilitating bacterial adherence in a biofilm is polysaccharide intercellular adhesin (PIA), whose synthesis requires the enzymes encoded within the intercellular adhesin operon (icaADBC). In vitro, the formation of S. epidermidis biofilms is enhanced by conditions that repress tricarboxylic acid (TCA) cycle activity, such as growth in a medium containing glucose. In many Gram-positive bacteria, repression of TCA cycle genes in response to glucose is accomplished by catabolite control protein A (CcpA). CcpA is a member of the GalR-LacI repressor family that mediates carbon catabolite repression, leading us to hypothesize that catabolite control of S. epidermidis biofilm formation is indirectly regulated by CcpA-dependent repression of the TCA cycle. To test this hypothesis, ccpA deletion mutants were constructed in strain 1457 and 1457-acnA and the effects on TCA cycle activity, biofilm formation and virulence were assessed. As anticipated, deletion of ccpA derepressed TCA cycle activity and inhibited biofilm formation; however, ccpA deletion had only a modest effect on icaADBC transcription. Surprisingly, deletion of ccpA in strain 1457-acnA, a strain whose TCA cycle is inactive and where icaADBC transcription is derepressed, strongly inhibited icaADBC transcription. These observations demonstrate that CcpA is a positive effector of biofilm formation and icaADBC transcription and a repressor of TCA cycle activity.

Tricarboxylic Acid Cycle-Dependent Attenuation of Staphylococcus aureus In Vivo Virulence by Selective Inhibition of Amino Acid Transport

Infection and Immunity, 2009

Staphylococci are the leading causes of endovascular infections worldwide. Commonly, these infections involve the formation of biofilms on the surface of biomaterials. Biofilms are a complex aggregation of bacteria commonly encapsulated by an adhesive exopolysaccharide matrix. In staphylococci, this exopolysaccharide matrix is composed of polysaccharide intercellular adhesin (PIA). PIA is synthesized when the tricarboxylic acid (TCA) cycle is repressed. The inverse correlation between PIA synthesis and TCA cycle activity led us to hypothesize that increasing TCA cycle activity would decrease PIA synthesis and biofilm formation and reduce virulence in a rabbit catheter-induced model of biofilm infection. TCA cycle activity can be induced by preventing staphylococci from exogenously acquiring a TCA cycle-derived amino acid necessary for growth. To determine if TCA cycle induction would decrease PIA synthesis in Staphylococcus aureus, the glutamine permease gene (glnP) was inactivated and TCA cycle activity, PIA accumulation, biofilm forming ability, and virulence in an experimental catheter-induced endovascular biofilm (endocarditis) model were determined. Inactivation of this major glutamine transporter increased TCA cycle activity, transiently decreased PIA synthesis, and significantly reduced in vivo virulence in the endocarditis model in terms of achievable bacterial densities in biofilm-associated cardiac vegetations, kidneys, and spleen. These data confirm the close linkage of TCA cycle activity and virulence factor production and establish that this metabolic linkage can be manipulated to alter infectious outcomes.

Metabolism, ATP production and biofilm generation by Staphylococcus epidermidis in either respiratory or fermentative conditions

AMB Express, 2020

Staphylococcus epidermidis is a Gram-positive saprophytic bacterium found in the microaerobic/anaerobic layers of the skin that becomes a health hazard when it is carried across the skin through punctures or wounds. Pathogenicity is enhanced by the ability of S. epidermidis to associate into biofilms, where it avoids attacks by the host and antibiotics. To test the effect of oxygen on metabolism and biofilm generation, cells were cultured at different oxygen concentrations ([O2]). As [O2] decreased, S. epidermidis metabolism went from respiratory to fermentative. Remarkably, the rate of growth decreased at low [O2] while a high concentration of ATP ([ATP]) was kept. Under hypoxic conditions bacteria associated into biofilms. Aerobic activity sensitized the cell to hydrogen peroxide-mediated damage. In the presence of metabolic inhibitors, biofilm formation decreased. It is suggested that at low [O2] S. epidermidis limits its growth and develops the ability to form biofilms.

Anaerobic Conditions Induce Expression of Polysaccharide Intercellular Adhesin in Staphylococcus aureus and Staphylococcus epidermidis

Infection and Immunity, 2001

Products of the intercellular adhesion ( ica ) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis , although the regulation is less stringent in S. epidermidis . Anaerobiosis also dramatically stimulates ica -specific mRNA expression in ica - and polysaccharide - positive strains of both S. aureus and S. epidermidis. These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environmen...

Staphylococcus aureus Biofilm Metabolism and the Influence of Arginine on Polysaccharide Intercellular Adhesin Synthesis, Biofilm Formation, and Pathogenesis

Infection and Immunity, 2007

Staphylococcus aureus and Staphylococcus epidermidis are the leading causes of nosocomial infections in the United States and often are associated with biofilms attached to indwelling medical devices. Despite the importance of biofilms, there is very little consensus about the metabolic requirements of S. aureus during biofilm growth. To assess the metabolic requirements of S. aureus growing in a biofilm, we grew USA200 and USA300 clonal types in biofilm flow cells and measured the extraction and accumulation of metabolites. In spite of the genetic differences, both clonal types extracted glucose and accumulated lactate, acetate, formate, and acetoin, suggesting that glucose was catabolized to pyruvate that was then catabolized via the lactate dehydrogenase, pyruvate formate-lyase, and butanediol pathways. Additionally, both clonal types selectively extracted the same six amino acids (serine, proline, arginine, glutamine, glycine, and threonine) from the culture medium. These data a...