Composition and dynamics of the bacterial community in aerobic granular sludge reactors (original) (raw)

The aerobic granular sludge (AGS) technology is probably the future standard for wastewater treatment, due to its low footprint and low energy consumption. Although achieving granulation is usually not a challenge anymore, our understanding of the community assembly during start-up, and of the microbial ecology of these reactors in general, is incomplete. Earlier studies have shown that high removal efficiency and stable process performance in bioreactors are dependent on the microbial community composition. High functional redundancy, which is a result of high evenness and phylogenetic variability, was found to be the key to a resilient bioreactor. The research presented in this thesis aimed to expand on the current knowledge about the composition and dynamics of the bacterial community in AGS reactors, using molecular biology techniques including qPCR, T-RFLP and Illumina MiSeq. The harsh wash-out conditions, typical for the start-up of AGS reactors, were found to drastically decr...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact