Efficient Oct Image Segmentation Using Neural Architecture Search (original) (raw)

$\Upsilon$-Net: A Spatiospectral Network for Retinal OCT Segmentation

2022

Automated segmentation of retinal optical coherence tomography (OCT) images has become an important recent direction in machine learning for medical applications. We hypothesize that the anatomic structure of layers and their high-frequency variation in OCT images make retinal OCT a fitting choice for extracting spectral domain features and combining them with spatial domain features. In this work, we present Υ-Net, an architecture that combines the frequency domain features with the image domain to improve the segmentation performance of OCT images. The results of this work demonstrate that the introduction of two branches, one for spectral and one for spatial domain features, brings very significant improvement in fluid segmentation performance and allows outperformance as compared to the well-known U-Net model. Our improvement was 13% on the fluid segmentation dice score and 1.9% on the average dice score. Finally, removing selected frequency ranges in the spectral domain demonstrates the impact of these features on the fluid segmentation outperformance.

Υ-Net: A Spatiospectral Network for Retinal OCT Segmentation

ArXiv, 2022

Automated segmentation of retinal optical coherence tomography (OCT) images has become an important recent direction in machine learning for medical applications. We hypothesize that the anatomic structure of layers and their high-frequency variation in OCT images make retinal OCT a fitting choice for extracting spectral domain features and combining them with spatial domain features. In this work, we present Υ-Net, an architecture that combines the frequency domain features with the image domain to improve the segmentation performance of OCT images. The results of this work demonstrate that the introduction of two branches, one for spectral and one for spatial domain features, brings very significant improvement in fluid segmentation performance and allows outperformance as compared to the well-known U-Net model. Our improvement was 13% on the fluid segmentation dice score and 1.9% on the average dice score. Finally, removing selected frequency ranges in the spectral domain demonst...

Topology guaranteed segmentation of the human retina from OCT using convolutional neural networks

2018

Optical coherence tomography (OCT) is a noninvasive imaging modality which can be used to obtain depth images of the retina. The changing layer thicknesses can thus be quantified by analyzing these OCT images, moreover these changes have been shown to correlate with disease progression in multiple sclerosis. Recent automated retinal layer segmentation tools use machine learning methods to perform pixel-wise labeling and graph methods to guarantee the layer hierarchy or topology. However, graph parameters like distance and smoothness constraints must be experimentally assigned by retinal region and pathology, thus degrading the flexibility and time efficiency of the whole framework. In this paper, we develop cascaded deep networks to provide a topologically correct segmentation of the retinal layers in a single feed forward propagation. The first network (S-Net) performs pixel-wise labeling and the second regression network (R-Net) takes the topologically unconstrained S-Net results ...

Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks

Computer Methods and Programs in Biomedicine, 2021

Background and Objective: Optical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of great relevance to study possible toxic effect of drugs and other treatments before human trials. In this paper, two different approaches to detect the most significant retinal layers in a rat OCT image are presented. Methods: One approach is based on a combination of local horizontal intensity profiles along with a new proposed variant of watershed transformation and the other is built upon an encoder-decoder convolutional network architecture. Results: After a wide validation, an averaged absolute distance error of 3.77 ± 2.59 and 1.90 ± 0.91 μm is achieved by both approaches, respectively, on a batch of the rat OCT database. After a second test of the deep-learning-based method using an unseen batch of the database, an averaged absolute distance error of 2.67 ± 1.25 μm is obtained. The rat OCT database used in this paper is made publicly available to facilitate further comparisons.

MPG-Net: Multi-Prediction Guided Network for Segmentation of Retinal Layers in OCT Images

2020 28th European Signal Processing Conference (EUSIPCO), 2021

Optical coherence tomography (OCT) is a commonly-used method of extracting high resolution retinal information. Moreover there is an increasing demand for the automated retinal layer segmentation which facilitates the retinal disease diagnosis. In this paper, we propose a novel multi-prediction guided attention network (MPG-Net) for automated retinal layer segmentation in OCT images. The proposed method consists of two major steps to strengthen the discriminative power of a U-shape Fully convolutional network (FCN) for reliable automated segmentation. Firstly, the feature refinement module which adaptively re-weights the feature channels is exploited in the encoder to capture more informative features and discard information in irrelevant regions. Furthermore, we propose a multi-prediction guided attention mechanism which provides pixel-wise semantic prediction guidance to better recover the segmentation mask at each scale. This mechanism which transforms the deep supervision to sup...

Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search

Biomedical optics express, 2017

We present a novel framework combining convolutional neural networks (CNN) and graph search methods (termed as CNN-GS) for the automatic segmentation of nine layer boundaries on retinal optical coherence tomography (OCT) images. CNN-GS first utilizes a CNN to extract features of specific retinal layer boundaries and train a corresponding classifier to delineate a pilot estimate of the eight layers. Next, a graph search method uses the probability maps created from the CNN to find the final boundaries. We validated our proposed method on 60 volumes (2915 B-scans) from 20 human eyes with non-exudative age-related macular degeneration (AMD), which attested to effectiveness of our proposed technique.

Acuurate segmentation of retina nerve fiber layer in OCT images

2015 IEEE International Conference on Electro/Information Technology (EIT), 2015

The quantification of intra-retinal boundaries in the Optical Coherence Tomography (OCT) is a crucial task to study and diagnose neurological and ocular diseases. Since the manual segmentation of layers is usually a time consuming task and relies on the user, an excessive volume of research has been done to do this job automatically and without interference of the user. Although, generally the same procedure is applied to extract all layers, but finding the RNFL is typically more challenging due to the fact that it may vanish in some parts of the eye, especially close to the fovea. To have general software, besides using common methods such as applying the shortest path algorithm on the global gradient of an image, some extra steps have been taken here to narrow the search area for Dijstra's algorithm, especially for the second boundary. The result demonstrates high accuracy in segmenting the RNFL that is really important for the diagnosing Glaucoma.

Segmentation of Preretinal Space in Optical Coherence Tomography Images Using Deep Neural Networks

Sensors

This paper proposes an efficient segmentation of the preretinal area between the inner limiting membrane (ILM) and posterior cortical vitreous (PCV) of the human eye in an image obtained with the use of optical coherence tomography (OCT). The research was carried out using a database of three-dimensional OCT imaging scans obtained with the Optovue RTVue XR Avanti device. Various types of neural networks (UNet, Attention UNet, ReLayNet, LFUNet) were tested for semantic segmentation, their effectiveness was assessed using the Dice coefficient and compared to the graph theory techniques. Improvement in segmentation efficiency was achieved through the use of relative distance maps. We also show that selecting a larger kernel size for convolutional layers can improve segmentation quality depending on the neural network model. In the case of PVC, we obtain the effectiveness reaching up to 96.35%. The proposed solution can be widely used to diagnose vitreomacular traction changes, which is...

Automated layer segmentation of macular OCT images using dual-scale gradient information

Optics Express, 2010

A novel automated boundary segmentation algorithm is proposed for fast and reliable quantification of nine intra-retinal boundaries in optical coherence tomography (OCT) images. The algorithm employs a two-step segmentation schema based on gradient information in dual scales, utilizing local and complementary global gradient information simultaneously. A shortest path search is applied to optimize the edge selection. The segmentation algorithm was validated with independent manual segmentation and a reproducibility study. It demonstrates high accuracy and reproducibility in segmenting normal 3D OCT volumes. The execution time is about 16 seconds per volume (480×512×128 voxels). The algorithm shows potential for quantifying images from diseased retinas as well.

ENAS U-Net: Evolutionary Neural Architecture Search for Retinal Vessel Segmentation

ArXiv, 2020

The accurate retina vessel segmentation (RVS) is of great significance to assist doctors in the diagnosis of ophthalmology diseases and other systemic diseases, and manually designing a valid neural network architecture for retinal vessel segmentation requires high expertise and a large workload. In order to further improve the performance of vessel segmentation and reduce the workload of manually designing neural network. We propose a specific search space based on encoder-decoder framework and apply neural architecture search (NAS) to retinal vessel segmentation. The search space is a macro-architecture search that involves some operations and adjustments to the entire network topology. For the architecture optimization, we adopt the modified evolutionary strategy which can evolve with limited computing resource to evolve the architectures. During the evolution, we select the elite architectures for the next generation evolution based on their performances. After the evolution, th...