Molecular mechanisms of nociception (original) (raw)

Nociceptor sensitization in pain pathogenesis

Nature Medicine, 2010

The incidence of chronic pain is estimated to be 20-25% worldwide. Few patients with chronic pain obtain complete relief from the drugs that are currently available, and more than half report inadequate relief. Underlying the challenge of developing better drugs to manage chronic pain is incomplete understanding of the heterogeneity of mechanisms that contribute to the transition from acute tissue insult to chronic pain and to pain conditions for which the underlying pathology is not apparent. An intact central nervous system (CNS) is required for the conscious perception of pain, and changes in the CNS are clearly evident in chronic pain states. However, the blockage of nociceptive input into the CNS can effectively relieve or markedly attenuate discomfort and pain, revealing the importance of ongoing peripheral input to the maintenance of chronic pain. Accordingly, we focus here on nociceptors: their excitability, their heterogeneity and their role in initiating and maintaining pain.

Pain: Molecular mechanisms

The Journal of Pain, 2000

Our understanding of chronic inflammatory and neuropathic pain at the molecular and cellular level has developed at an extraordinary rate in recent years. Inflammatory, or neuropathic, neuronal plasticity describes the process by which the neurons involved in pain transmission are converted from a state of normosensitivity to one in which they are hypersensitive. Here we summarize current theories on somatosensory neuroplasticity in a molecular context, highlighting key receptors, ion channels, and signal molecules involved. We also suggest new possibilities for drug design, based on the rational targeting of these molecular players.

Gene Expression Profiling of Cutaneous Injured and Non-Injured Nociceptors in SNI Animal Model of Neuropathic Pain

Scientific Reports

Nociceptors are a particular subtype of dorsal root ganglion (DRG) neurons that detect noxious stimuli and elicit pain. Although recent efforts have been made to reveal the molecular profile of nociceptors in normal conditions, little is known about how this profile changes in pathological conditions. In this study we exploited laser capture microdissection to specifically collect individual injured and noninjured nociceptive DRG neurons and to define their gene profiling in rat spared nerve injury (SNI) model of neuropathic pain. We found minimal transcriptional changes in non-injured neurons at 7 days after SNI. In contrast, several novel transcripts were altered in injured nociceptors, and the global signature of these LCM-captured neurons differed markedly from that the gene expression patterns found previously using whole DRG tissue following SNI. Pathway analysis of the transcriptomic profile of the injured nociceptors revealed oxidative stress as a key biological process. We validated the increase of caspase-6 (CASP6) in small-sized DRG neurons and its functional role in SNI-and paclitaxel-induced neuropathic pain. Our results demonstrate that the identification of gene regulation in a specific population of DRG neurons (e.g., nociceptors) is an effective strategy to reveal new mechanisms and therapeutic targets for neuropathic pain from different origins.

Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain

Proceedings of the National Academy of Sciences, 2004

Nine voltage-gated sodium channels are expressed in complex patterns in mammalian nerve and muscle. Three channels, Nav1.7, Nav1.8, and Na v1.9, are expressed selectively in peripheral damage-sensing neurons. Because there are no selective blockers of these channels, we used gene ablation in mice to examine the function of Nav1.7 (PN1) in pain pathways. A global Nav1.7-null mutant was found to die shortly after birth. We therefore used the Cre؊loxP system to generate nociceptor-specific knockouts. Na v1.8 is only expressed in peripheral, mainly nociceptive, sensory neurons. We knocked Cre recombinase into the Na v1.8 locus to generate heterozygous mice expressing Cre recombinase in Nav1.8-positive sensory neurons. Crossing these animals with mice where Na v1.7 exons 14 and 15 were flanked by loxP sites produced nociceptor-specific knockout mice that were viable and apparently normal. These animals showed increased mechanical and thermal pain thresholds. Remarkably, all inflammatory pain responses evoked by a range of stimuli, such as formalin, carrageenan, complete Freund's adjuvant, or nerve growth factor, were reduced or abolished. A congenital pain syndrome in humans recently has been mapped to the Na v1.7 gene, SCN9A. Dominant Na v1.7 mutations lead to edema, redness, warmth, and bilateral pain in human erythermalgia patients, confirming an important role for Na v1.7 in inflammatory pain. Nociceptor-specific gene ablation should prove useful in understanding the role of other broadly expressed genes in pain pathways.

Nociceptors: Their Role in Body’s Defenses, Tissue Specific Variations and Anatomical Update

Journal of Pain Research

The human body is constantly under the influence of numerous pathological factors: both external and internal. These factors can be potentially harmful and are perceived as such with a specialized nervous system subunit: the nociceptive system. The functional unit of the nociceptive system is the nociceptor. Recent studies have shown that nociceptors play a crucial role in maintaining of defensive homeostasis (responsive, immune, behavioral). Nociceptors respond to potentially harmful stimuli within viscera, bones, muscles, skin and specialized sensory organs. They function as complex predictors of harm through formation of pain stimulus. Their function and structures vary within different tissues. This variability reflects the anatomical and pathological peculiarities of varying tissues. Nociceptors play a significant role in adaptive, protective and behavioral reactions. Their functional capabilities and vast spread throughout the body make them the main units of the body's defense system, allowing us to interact with the inner and outer environments.

Neuronal Plasticity and Signal Transduction in Nociceptive Neurons: Implications for the Initiation and Maintenance of Pathological Pain

Neurobiology of Disease, 2001

Pathological pain, consisting of tissue injury-induced inflammatory and nerve injury-induced neuropathic pain, is an expression of neuronal plasticity. One component of this is that the afferent input generated by injury and intense noxious stimuli triggers an increased excitability of nociceptive neurons in the spinal cord. This central sensitization is an activity-dependent functional plasticity that results from activation of different intracellular kinase cascades leading to the phosphorylation of key membrane receptors and channels, increasing synaptic efficacy. Central sensitization is both induced and maintained in a transcription-independent manner. Several different intracellular signal transduction cascades converge on MAPK (mitogen-activated protein kinase), activation of which appears to be a master switch or gate for the regulation of central sensitization. In addition to posttranslational regulation, the MAPK pathway may also regulate long-term pain hypersensitivity, via transcriptional regulation of key gene products. Pharmacological intervention targeted specifically at the signal transduction pathways in nociceptive neurons may provide, therefore, new therapeutic opportunities for pathological pain.