Maximal Monotonicity, Subdifferentials and Generalizations (original) (raw)

Abstract

In 1966 R.T. Rockafellar [14] exploring the operator of subdifferential of convex function on a Banach space revealed that the operator is maximal monotone i.e. if for every (x, x*) E graph of it holds (x*-q*, x-q) :2: 0, then q* E of(q).

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (24)

  1. J.-P. Aubin, Optima and equilibria, Springer-Verlag, 1993.
  2. D. Aussel, J.-N. Corvellec, M. Lassonde, Subdifferential characterization of quasiconvexity and convexity, J. Convex Analysis 1:195-201, 1994.
  3. D. Aussel, J.-N. Corvellec, M. Lassonde, Mean value property and subdif- ferential criteria for lower semicontinuous junction, Trans. Amer. Math. Soc. 147: 4147-4161, 1995.
  4. R Correa, A. Jofre, L. Thibault, Subdifferential monotonicity as character- ization of convex function, Numer. Punct. Anal. and Optimiz. 15:531-535, 1994.
  5. K. Deimling, Nonlinear functional analysis, Spriger-Verlag, Berlin,1985.
  6. Ekeland Nonconvex minimization problems, Bull. ofthe AMS 1:443-474, 1979.
  7. S.P. Fitzpatrick and RR Phelps, Some properties of maximal mono- tone operators on nonrefiexive Banach spaces, Set-Valued Analysis 3:51- 69,1995.
  8. G. Kothe, Topological Vector Space I, Springer-Verlag, 1985.
  9. E. Krauss, Maximal monotone operators and saddle functions 1. Zeitschrift fUr Analysis und ihre Anwendungen, 5:333-346, 1986.
  10. D. T. Luc, Characterization of quasiconvex function Bull. Austral. Math. Soc. 48:393-406, 1993.
  11. D. T. Luc, On generalized convex nonsmooth functions, Bull. Ausrtal. Math. Soc. 49:139-149, 1994.
  12. D. T. Luc, A resolution of Simons' maximal monotonicity problem, Journal of Convex Analysis 3:367-370,1996.
  13. R R Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Math. 1364, Springer-Verlag, 1993 ( second edition).
  14. RT. Rockafellar, Characterization of the subdifferentials of convex func- tions, Pacific J. Math 17:497-509,1966.
  15. RT. Rockafellar, Local boundedness of nonlinear, monotone operators. Michigan Math. J., 16:397-407, 1969.
  16. RT. Rockafellar and RJ.-B. Wets, Variational Analysis, (book to be pub- lished by Springer-Verlag), 1995.
  17. S. Simons, Subtangents with controlled slope, Nonlinear Anal. Theory Meth. App. 22:1373-1389, 1994.
  18. S. Simons, Swimming below icebergs, Set-Valued Analysis 2:327-337,1994.
  19. S. Simons, The range of a monotone operator. J. Math. Anal. Appl., 196:176-201,1996.
  20. L. Thibault, D. Zagrodny, Integration of subdifferentials of lower semi- continuous functions on Banach spaces, J. Math. Anal. Appl. 189:33-58, 1995.
  21. D. Zagrodny Approximate mean value theorem for upper subderivatives, Nonlinear Anal. Theory Meth. Appl 12:1413-1428,1988.
  22. D. Zagrodny, The maximal monotonicity of the subdifferentials of convex functions: Simons' problem, Set-Valued Anal. 4:301-314, 1996.
  23. D. Zagrodny, Answers to the basic questions on maximal monotone oper- ators on nonrefiexive Banach spaces ( in preparation).
  24. E. Zeidler, Nonlinear functional analysis and its applications II: Mono- tone operators; IV: Applications to mathematical physics, Springer-Verlag, New-York, Berlin, 1986.